Anesth Pain Med.  2020 Jul;15(3):259-268. 10.17085/apm.19099.

Advantages and pitfalls of clinical application of sugammadex

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Chosun University Hospital, School of Medicine, Chosun University, Gwangju, Korea

Abstract

Sugammadex, a modified γ-cyclodextrin, is one of the drugs focused on in the anesthetic field because it provides rapid and complete reversal from neuromuscular blockade (NMB) by encapsulating rocuronium. Its introduction has revolutionized anesthesia practice because it is a safe, predictable, and reliable neuromuscular antagonist. Hence, its use has increased worldwide. Further, it has been in the spotlight for recovering from deep NMB in laparoscopic surgery and improving the surgical condition. Recently, studies have been conducted on the postoperative outcome after deep NMB and use of sugammadex in various clinical conditions. However, with increase in sugammadex use, reports regarding its complications are increasing. Appropriate dosing of sugammadex with quantitative neuromuscular monitoring is emphasized because under-dosing or over-dosing of sugammadex might be associated with unexperienced complications. Sugammadex is now leaping into an ideal reversal agent, changing the anesthesia practice.

Keyword

Complications; Neuromuscular blockade; Review; Rocuronium; Sugammadex

Reference

1. Woo T, Kim KS, Shim YH, Kim MK, Yoon SM, Lim YJ, et al. Sugammadex versus neostigmine reversal of moderate rocuronium-induced neuromuscular blockade in Korean patients. Korean J Anesthesiol. 2013; 65:501–7.
2. Della Rocca G, Pompei L, Pagan DE Paganis C, Tesoro S, Mendola C, Boninsegni P, et al. Reversal of rocuronium induced neuromuscular block with sugammadex or neostigmine: a large observational study. Acta Anaesthesiol Scand. 2013; 57:1138–45.
3. Martini CH, Boon M, Bevers RF, Aarts LP, Dahan A. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br J Anaesth. 2014; 112:498–505.
4. Paton L, Gupta S, Blacoe D. Successful use of sugammadex in a 'can't ventilate' scenario. Anaesthesia. 2013; 68:861–4.
5. Wołoszczuk-Gębicka B, Zawadzka-Głos L, Lenarczyk J, Sitkowska BD, Rzewnicka I. Two cases of the "cannot ventilate, cannot intubate" scenario in children in view of recent recommendations. Anaesthesiol Intensive Ther. 2014; 46:88–91.
6. Mendonca C. Sugammadex to rescue a 'can't ventilate' scenario in an anticipated difficult intubation: is it the answer? Anaesthesia. 2013; 68:795–9.
7. Elliott SK, Ball DR. Sugammadex in anticipated difficult airways(2.). Anaesthesia. 2013; 68:1190.
8. Benham SW. Sugammadex in anticipated difficult airways(3.). Anaesthesia. 2013; 68:1190–1.
9. Dalton AJ, McGuire B, Rodney G. Sugammadex in anticipated difficult airways(4.). Anaesthesia. 2013; 68:1191–2.
10. Copp MV. Sugammadex in anticipated difficult airways(5.). Anaesthesia. 2013; 68:1192.
11. Dahl V, Pendeville PE, Hollmann MW, Heier T, Abels EA, Blobner M. Safety and efficacy of sugammadex for the reversal of rocuronium-induced neuromuscular blockade in cardiac patients undergoing noncardiac surgery. Eur J Anaesthesiol. 2009; 26:874–84.
12. Pühringer FK, Rex C, Sielenkämper AW, Claudius C, Larsen PB, Prins ME, et al. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology. 2008; 109:188–97.
13. Dendramis G, Paleologo C, Sgarito G, Giordano U, Verlato R, Baranchuk A, et al. Anesthetic and perioperative management of patients with Brugada syndrome. Am J Cardiol. 2017; 120:1031–6.
14. Wefki Abdelgawwad Shousha AA, Sanfilippo M, Sabba A, Pinchera P. Sugammadex and reversal of neuromuscular block in adult patient with duchenne muscular dystrophy. Case Rep Anesthesiol. 2014; 2014:680568.
15. Chang YJ, Jung WS, Son WR, Jo YY. Discordance between train-of-four response and clinical symptoms in a patient with amyotrophic lateral sclerosis. Acta Med Okayama. 2014; 68:125–7.
16. Sungur Ulke Z, Yavru A, Camci E, Ozkan B, Toker A, Senturk M. Rocuronium and sugammadex in patients with myasthenia gravis undergoing thymectomy. Acta Anaesthesiol Scand. 2013; 57:745–8.
17. Vymazal T, Krecmerova M, Bicek V, Lischke R. Feasibility of full and rapid neuromuscular blockade recovery with sugammadex in myasthenia gravis patients undergoing surgery - a series of 117 cases. Ther Clin Risk Manag. 2015; 11:1593–6.
18. Takeda A, Kawamura M, Hamaya I, Kitamura H, Muto R, Mitono H. [Case of anesthesia for thoracoscopic thymectomy in a pediatric patient with myasthenia gravis: reversal of rocuronium-induced neuromuscular blockade with sugammadex]. Masui. 2012; 61:855–8. Japanese.
19. Grandjean B, Guerci P, Vial F, Raft J, Fuchs-Buder T, Bouaziz H. [Sugammadex and profound rocuronium neuromuscular blockade induced by magnesium sulphate]. Ann Fr Anesth Reanim. 2013; 32:378–9. French.
20. Saricicek V, Sahin L, Bulbul F, Ucar S, Sahin M. Does rocuronium-sugammadex reduce myalgia and headache after electroconvulsive therapy in patients with major depression? J ECT. 2014; 30:30–4.
21. Van Lancker P, Dillemans B, Bogaert T, Mulier JP, De Kock M, Haspeslagh M. Ideal versus corrected body weight for dosage of sugammadex in morbidly obese patients. Anaesthesia. 2011; 66:721–5.
22. Llauradó S, Sabaté A, Ferreres E, Camprubí I, Cabrera A. Sugammadex ideal body weight dose adjusted by level of neuromuscular blockade in laparoscopic bariatric surgery. Anesthesiology. 2012; 117:93–8.
23. Badaoui R, Cabaret A, Alami Y, Zogheib E, Popov I, Lorne E, et al. Reversal of neuromuscular blockade by sugammadex in laparoscopic bariatric surgery: in support of dose reduction. Anaesth Crit Care Pain Med. 2016; 35:25–9.
24. Schmartz D, Guerci P, Fuchs-Buder T. Sugammadex dosing in bariatric patients. Anesthesiology. 2013; 118:754.
25. Sanfilippo M, Alessandri F, Wefki Abdelgawwad Shousha AA, Sabba A, Cutolo A. Sugammadex and ideal body weight in bariatric surgery. Anesthesiol Res Pract. 2013; 2013:389782.
26. Abd El-Rahman AM, Othman AH, El Sherif FA, Mostafa MF, Taha O. Comparison of three different doses sugammadex based on ideal body weight for reversal of moderate rocuronium-induced neuromuscular blockade in laparoscopic bariatric surgery. Minerva Anestesiol. 2017; 83:138–44.
27. Duarte NMDC, Caetano AMM, Neto SDSC, Filho GRO, Arouca GO, Campos JM. [Sugammadex by ideal body weight versus 20% and 40% corrected weight in bariatric surgery - double-blind randomized clinical trial]. Rev Bras Anestesiol. 2018; 68:219–24. Portuguese.
28. Ledowski T. Sugammadex: what do we know and what do we still need to know? A review of the recent (2013 to 2014) literature. Anaesth Intensive Care. 2015; 43:14–22.
29. Bom A, Hope F, Rutherford S, Thomson K. Preclinical pharmacology of sugammadex. J Crit Care. 2009; 24:29–35.
30. Czarnetzki C, Tassonyi E, Lysakowski C, Elia N, Tramèr MR. Efficacy of sugammadex for the reversal of moderate and deep rocuronium-induced neuromuscular block in patients pretreated with intravenous magnesium: a randomized controlled trial. Anesthesiology. 2014; 121:59–67.
31. Song S, Yoo BH, Kim KM, Lee S. Reversal of rocuronium induced neuromuscular blockade using sugammadex in a patient with eclampsia treated by magnesium intraoperatively. Korean J Anesthesiol. 2014; 67(Suppl):S102–3.
32. Germano Filho PA, Cavalcanti IL, Barrucand L, Verçosa N. Effect of magnesium sulphate on sugammadex reversal time for neuromuscular blockade: a randomised controlled study. Anaesthesia. 2015; 70:956–61.
33. Kang WS, Kim KS, Song SM. Reversal with sugammadex for rocuronium-induced deep neuromuscular block after pretreatment of magnesium sulfate in rabbits. Korean J Anesthesiol. 2017; 70:203–8.
34. Sung TY, You HJ, Cho CK, Choi HR, Kim YB, Shin YS, et al. Effects of magnesium chloride on rocuronium-induced neuromuscular blockade and sugammadex reversal in an isolated rat phrenic nerve-hemidiaphragm preparation: an in-vitro study. Eur J Anaesthesiol. 2018; 35:193–9.
35. Unterbuchner C, Ziegleder R, Graf B, Metterlein T. Magnesium-induced recurarisation after reversal of rocuronium-induced neuromuscular block with sugammadex. Acta Anaesthesiol Scand. 2015; 59:536–40.
36. Corda DM, Robards CB. Sugammadex and oral contraceptives: is it time for a revision of the anesthesia informed consent? Anesth Analg. 2018; 126:730–1.
37. Et T, Topal A, Erol A, Tavlan A, Kılıçaslan A, Uzun ST. The effects of sugammadex on progesterone levels in pregnant rats. Balkan Med J. 2015; 32:203–7.
38. Gunduz Gul G, Ozer AB, Demirel I, Aksu A, Erhan OL. The effect of sugammadex on steroid hormones: a randomized clinical study. J Clin Anesth. 2016; 34:62–7.
39. Staals LM, Snoeck MM, Driessen JJ, van Hamersvelt HW, Flockton EA, van den Heuvel MW, et al. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010; 104:31–9.
40. Staals LM, Snoeck MM, Driessen JJ, Flockton EA, Heeringa M, Hunter JM. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth. 2008; 101:492–7.
41. Lobaz S, Sammut M, Damodaran A. Sugammadex rescue following prolonged rocuronium neuromuscular blockade with 'recurarisation' in a patient with severe renal failure. BMJ Case Rep. 2013; 2013:bcr2012007603.
42. Staals LM, de Boer HD, van Egmond J, Hope F, van de Pol F, Bom AH, et al. Reversal of rocuronium-induced neuromuscular block by sugammadex is independent of renal perfusion in anesthetized cats. J Anesth. 2011; 25:241–6.
43. Cammu G, Van Vlem B, van den Heuvel M, Stet L, el Galta R, Eloot S, et al. Dialysability of sugammadex and its complex with rocuronium in intensive care patients with severe renal impairment. Br J Anaesth. 2012; 109:382–90.
44. Panhuizen IF, Gold SJ, Buerkle C, Snoeck MM, Harper NJ, Kaspers MJ, et al. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br J Anaesth. 2015; 114:777–84.
45. Min KC, Lasseter KC, Marbury TC, Wrishko RE, Hanley WD, Wolford DG, et al. Pharmacokinetics of sugammadex in subjects with moderate and severe renal impairment. Int J Clin Pharmacol Ther. 2017; 55:746–52.
46. Navare SR, Garcia Medina O, Prielipp RC, Weinkauf JL. Sugammadex reversal of a large subcutaneous depot of rocuronium in a dialysis patient: a case report. A A Pract. 2019; 12:375–7.
47. Sparr HJ, Vermeyen KM, Beaufort AM, Rietbergen H, Proost JH, Saldien V, et al. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety, and pharmacokinetics. Anesthesiology. 2007; 106:935–43.
48. White PF, Tufanogullari B, Sacan O, Pavlin EG, Viegas OJ, Minkowitz HS, et al. The effect of residual neuromuscular blockade on the speed of reversal with sugammadex. Anesth Analg. 2009; 108:846–51.
49. Van Gestel L, Cammu G. Is the effect of sugammadex always rapid in onset? Acta Anaesthesiol Belg. 2013; 64:41–7.
50. Ortiz-Gómez JR, Palacio-Abizanda FJ, Fornet-Ruiz I. Failure of sugammadex to reverse rocuronium-induced neuromuscular blockade: a case report. Eur J Anaesthesiol. 2014; 31:708–9.
51. Carollo DS, White WM. Postoperative recurarization in a pediatric patient after sugammadex reversal of rocuronium-induced neuromuscular blockade: a case report. A A Pract. 2019; doi: 10.1213/XAA.0000000000001023. [Epub ahead of print].
52. Szental JA, Bramley D. Neostigmine-induced weakness after sugammadex. Anaesthesia. 2019; 74:253.
53. Jones PM, Turkstra TP. Mitigation of rocuronium-induced anaphylaxis by sugammadex: the great unknown. Anaesthesia. 2010; 65:89–90; author reply 90. .
54. McDonnell NJ, Pavy TJ, Green LK, Platt PR. Sugammadex in the management of rocuronium-induced anaphylaxis. Br J Anaesth. 2011; 106:199–201.
55. Funnell AE, Griffiths J, Hodzovic I. A further case of rocuronium-induced anaphylaxis treated with sugammadex. Br J Anaesth. 2011; 107:275–6.
56. Leysen J, Bridts CH, De Clerck LS, Ebo DG. Rocuronium-induced anaphylaxis is probably not mitigated by sugammadex: evidence from an in vitro experiment. Anaesthesia. 2011; 66:526–7.
57. Baldo BA, McDonnell NJ, Pham NH. Drug-specific cyclodextrins with emphasis on sugammadex, the neuromuscular blocker rocuronium and perioperative anaphylaxis: implications for drug allergy. Clin Exp Allergy. 2011; 41:1663–78.
58. Kawano T, Tamura T, Hamaguchi M, Yatabe T, Yamashita K, Yokoyama M. Successful management of rocuronium-induced anaphylactic reactions with sugammadex: a case report. J Clin Anesth. 2012; 24:62–4.
59. Raft J, Leclercq M, Longrois D, Meistelman C. [Fast recovery of haemodynamic and ventilatory functions after sugammadex bolus following rocuronium-induced anaphylactic shock refractory to conventional treatment]. Ann Fr Anesth Reanim. 2012; 31:158–61. French.
60. Clarke RC, Sadleir PH, Platt PR. The role of sugammadex in the development and modification of an allergic response to rocuronium: evidence from a cutaneous model. Anaesthesia. 2012; 67:266–73.
61. Tomak Y, Yılmaz A, Bostan H, Tümkaya L, Altuner D, Kalkan Y, et al. Effects of sugammadex and rocuronium mast cell number and degranulation in rat liver. Anaesthesia. 2012; 67:1101–4.
62. Binczak M, Fischler M, Le Guen M. Efficacy of sugammadex in preventing skin test reaction in a patient with confirmed rocuronium anaphylaxis: a case report. A A Pract. 2019; 13:17–9.
63. Raft J, Belhadj-Tahar N, Meistelman C. Slow recovery after sugammadex bolus after rocuronium-induced anaphylaxis. Br J Anaesth. 2014; 112:1115–6.
64. Hakozaki T, Murakawa M. Rocuronium-induced anaphylaxis not improved by low dose sugammadex: a case report. Anaesth Intensive Care. 2016; 44:522.
65. Plaud B. A new option for the treatment of anaphylaxis linked to steroidal neuromuscular blockers: How much value should we grant to case reports? Can J Anaesth. 2014; 61:511–8.
66. Yoo JH, Kim SI, Ok SY, Park SY, Cho A, Han YM, et al. Suspected anaphylactic reaction associated with sugammadex: a case report. Korean J Anesthesiol. 2016; 69:413–6.
67. Ue KL, Kasternow B, Wagner A, Rutkowski R, Rutkowski K. Sugammadex: an emerging trigger of intraoperative anaphylaxis. Ann Allergy Asthma Immunol. 2016; 117:714–6.
68. Tsur A, Kalansky A. Hypersensitivity associated with sugammadex administration: a systematic review. Anaesthesia. 2014; 69:1251–7.
69. Hori Y, Oi C, Yoshimura K, Sano H, Bepu Y. [A biphasic anaphylactic attack from sugammadex with a severe second attack]. Masui. 2015; 64:619–21. Japanese.
70. Jeyadoss J, Kuruppu P, Nanjappa N, Van Wijk R. Sugammadex hypersensitivity-a case of anaphylaxis. Anaesth Intensive Care. 2014; 42:89–92.
71. Sadleir PH, Russell T, Clarke RC, Maycock E, Platt PR. Intraoperative anaphylaxis to sugammadex and a protocol for intradermal skin testing. Anaesth Intensive Care. 2014; 42:93–6.
72. Nakanishi T, Ishida K, Utada K, Yamaguchi M, Matsumoto M. Anaphylaxis to sugammadex diagnosed by skin prick testing using both sugammadex and a sugammadex-rocuronium mixture. Anaesth Intensive Care. 2016; 44:122–4.
73. Savic L, Savic S, Hopkins PM. Anaphylaxis to sugammadex. Anaesth Intensive Care. 2014; 42:7–9.
74. Min KC, Bondiskey P, Schulz V, Woo T, Assaid C, Yu W, et al. Hypersensitivity incidence after sugammadex administration in healthy subjects: a randomised controlled trial. Br J Anaesth. 2018; 121:749–57.
75. de Kam PJ, Nolte H, Good S, Yunan M, Williams-Herman DE, Burggraaf J, et al. Sugammadex hypersensitivity and underlying mechanisms: a randomised study of healthy non-anaesthetised volunteers. Br J Anaesth. 2018; 121:758–67.
76. Ho G, Clarke RC, Sadleir PH, Platt PR. The first case report of anaphylaxis caused by the inclusion complex of rocuronium and sugammadex. A A Case Rep. 2016; 7:190–2.
77. Yamaoka M, Deguchi M, Ninomiya K, Kurasako T, Matsumoto M. A suspected case of rocuronium-sugammadex complex-induced anaphylactic shock after cesarean section. J Anesth. 2017; 31:148–51.
78. Ko MJ, Kim YH, Kang E, Lee BC, Lee S, Jung JW. Cardiac arrest after sugammadex administration in a patient with variant angina: a case report. Korean J Anesthesiol. 2016; 69:514–7.
79. Lee SH, Kim JY, Kim S, Sohn JT. The effect of sugammadex on the vascular tone of isolated rat aorta. Korean J Anesthesiol. 2018; 71:242–3.
80. Yang HS, Kim HJ, Koh W. Effects of sugammadex on the coronary circulation: direct effects on coronary vessels or hypersensitivity (Kounis syndrome)? Korean J Anesthesiol. 2017; 70:363–4.
81. Kikura M, Suzuki Y, Nishino J, Uraoka M. Allergic acute coronary artery stent thrombosis after the administration of sugammadex in a patient undergoing general anesthesia: a case report. A A Pract. 2019; 13:133–6.
82. Lee JH, Lee JH, Lee MH, Cho HO, Park SE. Postoperative negative pressure pulmonary edema following repetitive laryngospasm even after reversal of neuromuscular blockade by sugammadex: a case report. Korean J Anesthesiol. 2017; 70:95–9.
83. Amao R, Zornow MH, Cowan RM, Cheng DC, Morte JB, Allard MW. Use of sugammadex in patients with a history of pulmonary disease. J Clin Anesth. 2012; 24:289–97.
84. Suzuki M, Inagi T, Kikutani T, Mishima T, Bito H. Negative pressure pulmonary edema after reversing rocuronium-induced neuromuscular blockade by sugammadex. Case Rep Anesthesiol. 2014; 2014:135032.
85. Eskander JP, Cornett EM, Stuker W, Fox CJ, Breehl M. The combination of sugammadex and desflurane may increase the risk of bronchospasm during general anesthesia. J Clin Anesth. 2017; 41:73.
86. Lee W. The potential risks of sugammadex. Anesth Pain Med. 2019; 14:117–22.
87. Cammu G. Sugammadex: appropriate use in the context of budgetary constraints. Curr Anesthesiol Rep. 2018; 8:178–85.
88. Baete S, Vercruysse G, Vander Laenen M, De Vooght P, Van Melkebeek J, Dylst D, et al. The effect of deep versus moderate neuromuscular block on surgical conditions and postoperative respiratory function in bariatric laparoscopic surgery: a randomized, double blind clinical trial. Anesth Analg. 2017; 124:1469–75.
89. Staehr-Rye AK, Rasmussen LS, Rosenberg J, Juul P, Lindekaer AL, Riber C, et al. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg. 2014; 119:1084–92.
90. Cho YJ, Paik H, Jeong SY, Park JW, Jo WY, Jeon Y, et al. Lower intra-abdominal pressure has no cardiopulmonary benefits during laparoscopic colorectal surgery: a double-blind, randomized controlled trial. Surg Endosc. 2018; 32:4533–42.
91. Söderström CM, Borregaard Medici R, Assadzadeh S, Følsgaard S, Rosenberg J, Gätke MR, et al. Deep neuromuscular blockade and surgical conditions during laparoscopic ventral hernia repair: a randomised, blinded study. Eur J Anaesthesiol. 2018; 35:876–82.
92. Oh SK, Kwon WK, Park S, Ji SG, Kim JH, Park YK, et al. Comparison of operating conditions, postoperative pain and recovery, and overall satisfaction of surgeons with deep vs. no neuromuscular blockade for spinal surgery under general anesthesia: a prospective randomized controlled trial. J Clin Med. 2019; 8:498.
93. Mulier JP, Dillemans B. Anaesthetic factors affecting outcome after bariatric surgery, a retrospective levelled regression analysis. Obes Surg. 2019; 29:1841–50.
94. Kim NY, Koh JC, Lee KY, Kim SS, Hong JH, Nam HJ, et al. Influence of reversal of neuromuscular blockade with sugammadex or neostigmine on postoperative quality of recovery following a single bolus dose of rocuronium: a prospective, randomized, double-blinded, controlled study. J Clin Anesth. 2019; 57:97–102.
95. Boon M, Martini C, Yang HK, Sen SS, Bevers R, Warlé M, et al. Impact of high- versus low-dose neuromuscular blocking agent administration on unplanned 30-day readmission rates in retroperitoneal laparoscopic surgery. PLoS One. 2018; 13:e0197036.
96. Oh TK, Oh AY, Ryu JH, Koo BW, Song IA, Nam SW, et al. Retrospective analysis of 30-day unplanned readmission after major abdominal surgery with reversal by sugammadex or neostigmine. Br J Anaesth. 2019; 122:370–8.
97. Chae YJ, Joe HB, Oh J, Lee E, Yi IK. Thirty-day postoperative outcomes following sugammadex use in colorectal surgery patients; retrospective study. J Clin Med. 2019; 8:97.
98. Lu IC, Chang PY, Su MP, Chen PN, Chen HY, Chiang FY, et al. The feasibility of sugammadex for general anesthesia and facial nerve monitoring in patients undergoing parotid surgery. Kaohsiung J Med Sci. 2017; 33:400–4.
99. Lu IC, Lin IH, Wu CW, Chen HY, Lin YC, Chiang FY, et al. Preoperative, intraoperative and postoperative anesthetic prospective for thyroid surgery: what's new. Gland Surg. 2017; 6:469–75.
100. Empis de Vendin O, Schmartz D, Brunaud L, Fuchs-Buder T. Recurrent laryngeal nerve monitoring and rocuronium: a selective sugammadex reversal protocol. World J Surg. 2017; 41:2298–303.
101. Bailey CR. Sugammadex: when should we be giving it? Anaesthesia. 2017; 72:1170–5.
102. de Boer HD, Carlos RV, Brull SJ. Is lower-dose sugammadex a cost-saving strategy for reversal of deep neuromuscular block? Facts and fiction. BMC Anesthesiol. 2018; 18:159.
103. Muramatsu T, Isono S, Ishikawa T, Nozaki-Taguchi N, Okazaki J, Kitamura Y, et al. Differences of recovery from rocuronium-induced deep paralysis in response to small doses of sugammadex between elderly and nonelderly patients. Anesthesiology. 2018; 129:901–11.
104. Fuchs-Buder T. Less is not always more: sugammadex and the risk of under-dosing. Eur J Anaesthesiol. 2010; 27:849–50.
105. Kheterpal S, Vaughn MT, Dubovoy TZ, Shah NJ, Bash LD, Colquhoun DA, et al. Sugammadex versus neostigmine for reversal of neuromuscular blockade and postoperative pulmonary complications (STRONGER): a multicenter matched cohort analysis. Anesthesiology. 2020; 132:1371–81.
106. Bartels K, Hunter JM. Neostigmine versus sugammadex: the tide may be turning, but we still need to navigate the winds. Br J Anaesth. 2020; 124:504–7.
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr