Blood Res.  2020 Jul;55(S1):S19-S26. 10.5045/br.2020.S004.

Minimal residual disease in acute lymphoblastic leukemia: technical aspects and implications for clinical interpretation

Affiliations
  • 1Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
  • 2Department of Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea

Abstract

Minimal residual disease (MRD) monitoring has proven to be one of the fundamental independent prognostic factors for patients with acute lymphoblastic leukemia (ALL). Sequential monitoring of MRD using sensitive and specific methods, such as real-time quantitative polymerase chain reaction (qPCR) or flow cytometry (FCM), has improved the assessment of treatment response and is currently used for therapeutic stratification and early detection. Although both FCM and qPCR yield highly consistent results with sensitivities of 10‒4, each method has several limitations. For example, qPCR is time-consuming and laborious: designing primers that correspond to the immunoglobulin (IG) and T-cell receptor (TCR) gene rearrangements at diagnosis can take 3‒4 weeks. In addition, the evolution of additional clones beyond the first or index clone during therapy cannot be detected, which might lead to false-negative results. FCM requires experienced technicians and sometimes does not achieve a sensitivity of 10‒4. Accordingly, a next generation sequencing (NGS)-based method has been developed in an attempt to overcome these limitations. With the advent of high-throughput NGS technologies, a more in-depth analysis of IG and/or TCR gene rearrangements is now within reach, which impacts all applications of IG/TR analysis. However, standardization, quality control, and validation of this new technology are warranted prior to its incorporation into routine practice.

Keyword

Acute lymphoblastic leukemia; Minimal residual diseases; Immunoglobulin; T-cell receptor; Next generation sequencing

Reference

1. van Dongen JJ, van der Velden VH, Brüggemann M, Orfao A. 2015; Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 125:3996–4009. DOI: 10.1182/blood-2015-03-580027. PMID: 25999452. PMCID: PMC4490298.
Article
2. Brüggemann M, Gökbuget N, Kneba M. 2012; Acute lymphoblastic leukemia: monitoring minimal residual disease as a therapeutic principle. Semin Oncol. 39:47–57. DOI: 10.1053/j.seminoncol.2011.11.009. PMID: 22289491.
Article
3. van der Velden VH, Joosten SA, Willemse MJ, et al. 2001; Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia. 15:1485–7. DOI: 10.1038/sj.leu.2402198. PMID: 11516112.
Article
4. Flohr T, Schrauder A, Cazzaniga G, et al. 2008; Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 22:771–82. DOI: 10.1038/leu.2008.5. PMID: 18239620.
Article
5. van der Velden VH, van Dongen JJ. 2009; MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol. 538:115–50. DOI: 10.1007/978-1-59745-418-6_7. PMID: 19277574.
Article
6. Campana D. 2008; Molecular determinants of treatment response in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2008:366–73. DOI: 10.1182/asheducation-2008.1.366. PMID: 19074112.
Article
7. Dworzak MN, Gaipa G, Ratei R, et al. 2008; Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: Multicentric assessment is feasible. Cytometry B Clin Cytom. 74:331–40. DOI: 10.1002/cyto.b.20430. PMID: 18548617.
Article
8. Elia L, Grammatico S, Paoloni F, et al. 2011; Clinical outcome and monitoring of minimal residual disease in patients with acute lymphoblastic leukemia expressing the MLL/ENL fusion gene. Am J Hematol. 86:993–7. DOI: 10.1002/ajh.22161. PMID: 21953510.
Article
9. van Dongen JJ, Langerak AW, Brüggemann M, et al. 2003; Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 17:2257–317. DOI: 10.1038/sj.leu.2403202. PMID: 14671650.
Article
10. Kreyenberg H, Eckert C, Yarkin Y, et al. 2009; Immunoglobulin and T-cell receptor gene rearrangements as PCR-based targets are stable markers for monitoring minimal residual disease in acute lymphoblastic leukemia after stem cell transplantation. Leukemia. 23:1355–8. DOI: 10.1038/leu.2009.72. PMID: 19357703.
Article
11. Donovan JW, Ladetto M, Zou G, et al. 2000; Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood. 95:2651–8. DOI: 10.1182/blood.V95.8.2651. PMID: 10753847.
Article
12. Jonsson OG, Kitchens RL, Scott FC, Smith RG. 1990; Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood. 76:2072–9. DOI: 10.1182/blood.V76.10.2072.2072. PMID: 2122920.
Article
13. Theunissen PMJ, de Bie M, van Zessen D, de Haas V, Stubbs AP, van der Velden VHJ. 2019; Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: clonal evolution and implications for minimal residual disease target selection. Leuk Res. 76:98–104. DOI: 10.1016/j.leukres.2018.10.009. PMID: 30389174.
Article
14. Shin S, Hwang IS, Kim J, Lee KA, Lee ST, Choi JR. 2017; Detection of immunoglobulin heavy chain gene clonality by next-generation sequencing for minimal residual disease monitoring in B-lymphoblastic leukemia. Ann Lab Med. 37:331–5. DOI: 10.3343/alm.2017.37.4.331. PMID: 28445014. PMCID: PMC5409014.
Article
15. Sala Torra O, Othus M, Williamson DW, et al. 2017; Next-generation sequencing in adult B cell acute lymphoblastic leukemia patients. Biol Blood Marrow Transplant. 23:691–6. DOI: 10.1016/j.bbmt.2016.12.639. PMID: 28062215. PMCID: PMC5465962.
Article
16. Reyes-Barron C, Burack WR, Rothberg PG, Ding Y. 2017; Next-generation sequencing for minimal residual disease surveillance in acute lymphoblastic leukemia: an update. Crit Rev Oncog. 22:559–67. DOI: 10.1615/CritRevOncog.2017020588. PMID: 29604931.
Article
17. Kotrova M, Trka J, Kneba M, Brüggemann M. 2017; Is next-generation sequencing the way to go for residual disease monitoring in acute lymphoblastic leukemia? Mol Diagn Ther. 21:481–92. DOI: 10.1007/s40291-017-0277-9. PMID: 28452038.
Article
18. Inaba H, Azzato EM, Mullighan CG. 2017; Integration of next-generation sequencing to treat acute lymphoblastic leukemia with targetable lesions: The St. Jude Children's Research Hospital Approach. Front Pediatr. 5:258. DOI: 10.3389/fped.2017.00258. PMID: 29255701. PMCID: PMC5722984.
Article
19. Heikamp EB, Pui CH. 2018; Next-generation evaluation and treatment of pediatric acute lymphoblastic leukemia. J Pediatr. 203:14–24.e2. DOI: 10.1016/j.jpeds.2018.07.039. PMID: 30213460. PMCID: PMC6261438.
Article
20. Germano G, Valsecchi MG, Buldini B, et al. 2020; Next-generation sequencing of PTEN mutations for monitoring minimal residual disease in T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 67:e28025. DOI: 10.1002/pbc.28025. PMID: 31571345.
Article
21. Della Starza I, De Novi LA, Santoro A, et al. 2019; Digital droplet PCR and next-generation sequencing refine minimal residual disease monitoring in acute lymphoblastic leukemia. Leuk Lymphoma. 60:2838–40. DOI: 10.1080/10428194.2019.1607325. PMID: 31050551.
Article
22. Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. 2019; Next-generation sequencing in acute lymphoblastic leukemia. Int J Mol Sci. 20:E2929. DOI: 10.3390/ijms20122929. PMID: 31208040. PMCID: PMC6627957.
Article
23. Coustan-Smith E, Sancho J, Hancock ML, et al. 2002; Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood. 100:2399–402. DOI: 10.1182/blood-2002-04-1130. PMID: 12239148.
Article
24. Theunissen P, Mejstrikova E, Sedek L, et al. 2017; Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 129:347–57. DOI: 10.1182/blood-2016-07-726307. PMID: 27903527. PMCID: PMC5291958.
Article
25. Chen X, Wood BL. 2017; Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev. 31:63–75. DOI: 10.1016/j.blre.2016.09.006. PMID: 27742133.
Article
26. Sarmiento Palao H, Tarín F, Martirena F, et al. 2019; A reproducible strategy for analysis of minimal residual disease measured by Standardized multiparametric flow cytometry in b acute lymphoblastic leukemia. Cytometry B Clin Cytom. 96:12–5. DOI: 10.1002/cyto.b.21720. PMID: 30353651.
Article
27. Basso G, Veltroni M, Valsecchi MG, et al. 2009; Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 27:5168–74. DOI: 10.1200/JCO.2008.20.8934. PMID: 19805690.
Article
28. Ratei R, Basso G, Dworzak M, et al. 2009; Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: predictive impact of early blast reduction on the remission status after induction. Leukemia. 23:528–34. DOI: 10.1038/leu.2008.324. PMID: 19020543.
Article
29. Dworzak MN, Gaipa G, Schumich A, et al. 2010; Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom. 78:147–53. DOI: 10.1002/cyto.b.20516. PMID: 20201055.
Article
30. Kalina T, Flores-Montero J, van der Velden VH, et al. 2012; EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 26:1986–2010. DOI: 10.1038/leu.2012.122. PMID: 22948490. PMCID: PMC3437409.
Article
31. Kalina T, Brdickova N, Glier H, et al. 2018; Frequent issues and lessons learned from EuroFlow QA. J Immunol Methods. 475:112520. DOI: 10.1016/j.jim.2018.09.008. PMID: 30237053.
Article
32. Szczepański T, Beishuizen A, Pongers-Willemse MJ, et al. 1999; Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia. 13:196–205. DOI: 10.1038/sj.leu.2401277. PMID: 10025893.
Article
33. Germano G, Songia S, Biondi A, Basso G. 2001; Rapid detection of clonality in patients with acute lymphoblastic leukemia. Haematologica. 86:382–5. PMID: 11325643.
34. Verhagen OJ, Willemse MJ, Breunis WB, et al. 2000; Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 14:1426–35. DOI: 10.1038/sj.leu.2401801. PMID: 10942239.
Article
35. Brüggemann M, Raff T, Flohr T, et al. 2006; Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 107:1116–23. DOI: 10.1182/blood-2005-07-2708. PMID: 16195338.
36. van der Velden VH, Panzer-Grümayer ER, Cazzaniga G, et al. 2007; Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia. 21:706–13. DOI: 10.1038/sj.leu.2404535. PMID: 17287857.
Article
37. van der Velden VH, Cazzaniga G, Schrauder A, et al. 2007; Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 21:604–11. DOI: 10.1038/sj.leu.2404586. PMID: 17287850.
Article
38. Szczepański T, van der Velden VH, Raff T, et al. 2003; Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia. 17:2149–56. DOI: 10.1038/sj.leu.2403081. PMID: 14576730.
Article
39. Gabert J, Beillard E, van der Velden VH, et al. 2003; Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia. 17:2318–57. DOI: 10.1038/sj.leu.2403135. PMID: 14562125.
Article
40. Pfeifer H, Cazzaniga G, van der Velden VHJ, et al. 2019; Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 33:1910–22. DOI: 10.1038/s41375-019-0413-0. PMID: 30858550.
Article
41. Pfeifer H, Wassmann B, Bethge W, et al. 2013; Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia. 27:1254–62. DOI: 10.1038/leu.2012.352. PMID: 23212150.
Article
42. Hong Y, Zhao X, Qin Y, et al. 2018; The prognostic role of E2A-PBX1 expression detected by real-time quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) in B cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 97:1547–54. DOI: 10.1007/s00277-018-3338-1. PMID: 29705861.
Article
43. Bolufer P, Barragán E, Verdeguer A, et al. 2002; Rapid quantitative detection of TEL-AML1 fusion transcripts in pediatric acute lymphoblastic leukemia by real-time reverse transcription polymerase chain reaction using fluorescently labeled probes. Haematologica. 87:23–32. PMID: 11801462.
44. van Dongen JJ, Lhermitte L, Böttcher S, et al. 2012; EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 26:1908–75. DOI: 10.1038/leu.2012.120. PMID: 22552007. PMCID: PMC3437410.
Article
45. Pedreira CE, Costa ES, Lecrevisse Q, van Dongen JJ, Orfao A. EuroFlow Consortium. 2013; Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol. 31:415–25. DOI: 10.1016/j.tibtech.2013.04.008. PMID: 23746659.
Article
46. Flores-Montero J, Sanoja-Flores L, Paiva B, et al. 2017; Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 31:2094–103. DOI: 10.1038/leu.2017.29. PMID: 28104919. PMCID: PMC5629369.
47. Coccaro N, Anelli L, Zagaria A, et al. 2018; Droplet digital PCR is a robust tool for monitoring minimal residual disease in adult Philadelphia-positive acute lymphoblastic leukemia. J Mol Diagn. 20:474–82. DOI: 10.1016/j.jmoldx.2018.03.002. PMID: 29625246.
Article
48. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA. 2011; Evaluation of digital PCR for absolute DNA quantification. Anal Chem. 83:6474–84. DOI: 10.1021/ac103230c. PMID: 21446772.
Article
49. Whale AS, Huggett JF, Cowen S, et al. 2012; Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 40:e82. DOI: 10.1093/nar/gks203. PMID: 22373922. PMCID: PMC3367212.
Article
50. Hindson CM, Chevillet JR, Briggs HA, et al. 2013; Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 10:1003–5. DOI: 10.1038/nmeth.2633. PMID: 23995387. PMCID: PMC4118677.
Article
51. Belgrader P, Tanner SC, Regan JF, Koehler R, Hindson BJ, Brown AS. 2013; Droplet digital PCR measurement of HER2 copy number alteration in formalin-fixed paraffin-embedded breast carcinoma tissue. Clin Chem. 59:991–4. DOI: 10.1373/clinchem.2012.197855. PMID: 23358413.
Article
52. Lund HL, Hughesman CB, McNeil K, et al. 2016; Initial diagnosis of chronic myelogenous leukemia based on quantification of M-BCR status using droplet digital PCR. Anal Bioanal Chem. 408:1079–94. DOI: 10.1007/s00216-015-9204-2. PMID: 26631023.
Article
53. Alikian M, Ellery P, Forbes M, et al. 2016; Next-generation sequencing-assisted dna-based digital PCR for a personalized approach to the detection and quantification of residual disease in chronic myeloid leukemia patients. J Mol Diagn. 18:176–89. DOI: 10.1016/j.jmoldx.2015.09.005. PMID: 26857065.
Article
54. Zagaria A, Anelli L, Coccaro N, et al. 2015; BCR-ABL1 e6a2 transcript in chronic myeloid leukemia: biological features and molecular monitoring by droplet digital PCR. Virchows Arch. 467:357–63. DOI: 10.1007/s00428-015-1802-z. PMID: 26149409.
Article
55. Jennings LJ, George D, Czech J, Yu M, Joseph L. 2014; Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn. 16:174–9. DOI: 10.1016/j.jmoldx.2013.10.007. PMID: 24389534.
Article
56. Wright G, Watt E, Inglott S, Brooks T, Bartram J, Adams SP. 2019; Clinical benefit of a high-throughput sequencing approach for minimal residual disease in acute lymphoblastic leukemia. Pediatr Blood Cancer. 66:e27787. DOI: 10.1002/pbc.27787. PMID: 31034760.
Article
57. Salson M, Giraud M, Caillault A, et al. 2017; High-throughput sequencing in acute lymphoblastic leukemia: Follow-up of minimal residual disease and emergence of new clones. Leuk Res. 53:1–7. DOI: 10.1016/j.leukres.2016.11.009. PMID: 27930944.
Article
58. Wu J, Jia S, Wang C, et al. 2016; Minimal residual disease detection and evolved IGH clones analysis in acute B lymphoblastic leukemia using IGH deep sequencing. Front Immunol. 7:403. DOI: 10.3389/fimmu.2016.00403. PMID: 27757113. PMCID: PMC5048610.
Article
59. Ladetto M, Brüggemann M, Monitillo L, et al. 2014; Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 28:1299–307. DOI: 10.1038/leu.2013.375. PMID: 24342950.
Article
60. Eckert C, Flohr T, Koehler R, et al. 2011; Very early/early relapses of acute lymphoblastic leukemia show unexpected changes of clonal markers and high heterogeneity in response to initial and relapse treatment. Leukemia. 25:1305–13. DOI: 10.1038/leu.2011.89. PMID: 21546902.
Article
61. Kotrova M, van der Velden VHJ, van Dongen JJM, et al. 2017; Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 52:962–8. DOI: 10.1038/bmt.2017.16. PMID: 28244980.
Article
62. Kotrova M, Muzikova K, Mejstrikova E, et al. 2015; The predictive strength of next-generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood. 126:1045–7. DOI: 10.1182/blood-2015-07-655159. PMID: 26294720. PMCID: PMC4551355.
Article
63. Faham M, Zheng J, Moorhead M, et al. 2012; Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 120:5173–80. DOI: 10.1182/blood-2012-07-444042. PMID: 23074282. PMCID: PMC3537310.
Article
64. Gökbuget N, Kneba M, Raff T, et al. 2012; Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 120:1868–76. DOI: 10.1182/blood-2011-09-377713. PMID: 22442346.
Article
65. Shen Z, Gu X, Mao W, et al. 2018; Influence of pre-transplant minimal residual disease on prognosis after Allo-SCT for patients with acute lymphoblastic leukemia: systematic review and meta-analysis. BMC Cancer. 18:755. DOI: 10.1186/s12885-018-4670-5. PMID: 30037340. PMCID: PMC6056932.
Article
66. Terwey TH, Hemmati PG, Nagy M, et al. 2014; Comparison of chimerism and minimal residual disease monitoring for relapse prediction after allogeneic stem cell transplantation for adult acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 20:1522–9. DOI: 10.1016/j.bbmt.2014.05.026. PMID: 24907626.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr