Blood Res.  2020 Jul;55(S1):S14-S18. 10.5045/br.2020.S003.

New agents in acute myeloid leukemia (AML)

Affiliations
  • 1Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, Korea
  • 2Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Despite expanding knowledge in the molecular landscape of acute myeloid leukemia (AML) and an increasing understanding of leukemogenic pathways, little has changed in the treatment of AML in the last 40 years. Since introduction in the 1970s, combination chemotherapy consisting of anthracycline and cytarabine has been the mainstay of treatment, with major therapeutic advances based on improving supportive care rather than the introduction of novel therapeutics. Over the last decades, there have been extensive efforts to identify specific target mutations or pathways with the aim of improving clinical outcomes. Finally, after a prolonged wait, we are witnessing the next wave of AML treatment, characterized by a more “precise” and “personalized” understanding of the unique molecular or genetic mapping of individual patients. This new trend has since been further facilitated, with four new FDA approvals granted in 2017 in AML therapeutics. Currently, a total of eight targeted agents have been approved since 2017 (as of Jan. 2020). In this review, we will briefly discuss these newer agents in the context of their indication and the basis of their approval.

Keyword

Acute myeloid leukemia; New FDA approvals

Reference

1. Jang J, Lee J, Jang JH, Jung CW, Park S. 2019; Anti-leukemic effects of simvastatin on NRAS(G12D) mutant acute myeloid leukemia cells. Mol Biol Rep. 46:5859–66. DOI: 10.1007/s11033-019-05019-8. PMID: 31452046.
Article
2. Roboz GJ. 2011; Novel approaches to the treatment of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2011:43–50. DOI: 10.1182/asheducation-2011.1.43. PMID: 22160011.
Article
3. Bullinger L, Döhner K, Döhner H. 2017; Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 35:934–46. DOI: 10.1200/JCO.2016.71.2208. PMID: 28297624.
Article
4. Papaemmanuil E, Gerstung M, Bullinger L, et al. 2016; Genomic classification and prognosis in acute myeloid Leukemia. N Engl J Med. 374:2209–21. DOI: 10.1056/NEJMoa1516192. PMID: 27276561. PMCID: PMC4979995.
5. Arber DA, Orazi A, Hasserjian R, et al. 2016; The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–405. DOI: 10.1182/blood-2016-03-643544. PMID: 27069254.
Article
6. Leonard JP, Martin P, Roboz GJ. 2017; Practical implications of the 2016 revision of the World Health Organization classification of lymphoid and myeloid neoplasms and acute leukemia. J Clin Oncol. 35:2708–15. DOI: 10.1200/JCO.2017.72.6745. PMID: 28654364.
Article
7. Kopmar NE, Estey EH. 2019; New drug approvals in acute myeloid leukemia: an unprecedented paradigm shift. Clin Adv Hematol Oncol. 17:569–75. PMID: 31730583.
8. Kazi JU, Rönnstrand L. 2019; FMS-like tyrosine kinase 3/FLT3: from basic science to clinical implications. Physiol Rev. 99:1433–66. DOI: 10.1152/physrev.00029.2018. PMID: 31066629.
Article
9. Canaani J, Labopin M, Socié G, et al. 2017; Long term impact of hyperleukocytosis in newly diagnosed acute myeloid leukemia patients undergoing allogeneic stem cell transplantation: an analysis from the acute leukemia working party of the EBMT. Am J Hematol. 92:653–9. DOI: 10.1002/ajh.24737. PMID: 28370339.
Article
10. Tien FM, Hou HA, Tsai CH, et al. 2018; Hyperleukocytosis is associated with distinct genetic alterations and is an independent poor-risk factor in de novo acute myeloid leukemia patients. Eur J Haematol. 101:86–94. DOI: 10.1111/ejh.13073. PMID: 29624746.
11. Short NJ, Kantarjian H, Ravandi F, Daver N. 2019; Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol. 10:2040620719827310. DOI: 10.1177/2040620719827310. PMID: 30800259. PMCID: PMC6378516.
Article
12. Levis M. 2017; Midostaurin approved for FLT3-mutated AML. Blood. 129:3403–6. DOI: 10.1182/blood-2017-05-782292. PMID: 28546144.
Article
13. Stone RM, Mandrekar SJ, Sanford BL, et al. 2017; Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 377:454–64. DOI: 10.1056/NEJMoa1614359. PMID: 28644114. PMCID: PMC5754190.
14. Daver N, Schlenk RF, Russell NH, Levis MJ. 2019; Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 33:299–312. DOI: 10.1038/s41375-018-0357-9. PMID: 30651634. PMCID: PMC6365380.
Article
15. Larrosa-Garcia M, Baer MR. 2017; FLT3 inhibitors in acute myeloid leukemia: current status and future directions. Mol Cancer Ther. 16:991–1001. DOI: 10.1158/1535-7163.MCT-16-0876. PMID: 28576946. PMCID: PMC5600895.
Article
16. Perl AE, Martinelli G, Cortes JE, et al. 2019; Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 381:1728–40. DOI: 10.1056/NEJMoa1902688. PMID: 31665578.
17. Godwin CD, Gale RP, Walter RB. 2017; Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 31:1855–68. DOI: 10.1038/leu.2017.187. PMID: 28607471.
Article
18. Bross PF, Beitz J, Chen G, et al. 2001; Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 7:1490–6. PMID: 11410481.
19. Eom KS, Kim HJ, Min WS, et al. 2007; Gemtuzumab ozogamicin in combination with attenuated doses of standard induction chemotherapy can successfully induce complete remission without increasing toxicity in patients with acute myeloid leukemia aged 55 or older. Eur J Haematol. 79:398–404. DOI: 10.1111/j.1600-0609.2007.00946.x. PMID: 17916082.
Article
20. Eom KS, Kim HJ, Cho BS, et al. 2011; Hematopoietic stem cell transplant following remission induction chemotherapy including gemtuzumab ozogamicin is a feasible and effective treatment option in elderly patients with acute myeloid leukemia. Leuk Lymphoma. 52:2321–8. DOI: 10.3109/10428194.2011.587562. PMID: 22023488.
Article
21. Castaigne S, Pautas C, Terré C, et al. 2012; Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 379:1508–16. DOI: 10.1016/S0140-6736(12)60485-1. PMID: 22482940.
Article
22. Amadori S, Suciu S, Selleslag D, et al. 2016; Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 Trial. J Clin Oncol. 34:972–9. DOI: 10.1200/JCO.2015.64.0060. PMID: 26811524.
23. Taksin AL, Legrand O, Raffoux E, et al. 2007; High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 21:66–71. DOI: 10.1038/sj.leu.2404434. PMID: 17051246.
Article
24. Baron J, Wang ES. 2018; Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol. 11:549–59. DOI: 10.1080/17512433.2018.1478725. PMID: 29787320. PMCID: PMC6661897.
Article
25. Yu B, Liu D. 2019; Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia. Biomark Res. 7:24. DOI: 10.1186/s40364-019-0175-x. PMID: 31695916. PMCID: PMC6824118.
Article
26. Mayer LD, Tardi P, Louie AC. 2019; CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomedicine. 14:3819–30. DOI: 10.2147/IJN.S139450. PMID: 31213803. PMCID: PMC6537039.
27. Feldman EJ, Kolitz JE, Trang JM, et al. 2012; Pharmacokinetics of CPX-351; a nano-scale liposomal fixed molar ratio formulation of cytarabine:daunorubicin, in patients with advanced leukemia. Leuk Res. 36:1283–9. DOI: 10.1016/j.leukres.2012.07.006. PMID: 22840315.
Article
28. Lancet JE, Uy GL, Cortes JE, et al. 2018; CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 36:2684–92. DOI: 10.1200/JCO.2017.77.6112. PMID: 30024784. PMCID: PMC6127025.
Article
29. Dogra R, Bhatia R, Shankar R, Bansal P, Rawal RK. 2018; Enasidenib: first mutant IDH2 inhibitor for the treatment of refractory and relapsed acute myeloid leukemia. Anticancer Agents Med Chem. 18:1936–51. DOI: 10.2174/1871520618666181025091128. PMID: 30360730.
Article
30. Stein EM. 2018; Enasidenib, a targeted inhibitor of mutant IDH2 proteins for treatment of relapsed or refractory acute myeloid leukemia. Future Oncol. 14:23–40. DOI: 10.2217/fon-2017-0392. PMID: 29243965.
Article
31. Stein EM, DiNardo CD, Pollyea DA, et al. 2017; Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 130:722–31. DOI: 10.1182/blood-2017-04-779405. PMID: 28588020. PMCID: PMC5572791.
32. DiNardo CD, Stein EM, de Botton S, et al. 2018; Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 378:2386–98. DOI: 10.1056/NEJMoa1716984. PMID: 29860938.
33. Roboz GJ, DiNardo CD, Stein EM, et al. 2019; Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. [Epub ahead of print]. DOI: 10.1182/blood.2019002140. PMID: 31841594. PMCID: PMC7019193.
Article
34. Sharma H. 2018; Development of novel therapeutics targeting isocitrate dehydrogenase mutations in cancer. Curr Top Med Chem. 18:505–24. DOI: 10.2174/1568026618666180518091144. PMID: 29773061.
Article
35. Montalban-Bravo G, DiNardo CD. 2018; The role of IDH mutations in acute myeloid leukemia. Future Oncol. 14:979–93. DOI: 10.2217/fon-2017-0523. PMID: 29543066.
36. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. 2017; Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 31:272–81. DOI: 10.1038/leu.2016.275. PMID: 27721426. PMCID: PMC5292675.
Article
37. Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T. 2010; IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood. 116:5486–96. DOI: 10.1182/blood-2010-02-267955. PMID: 20805365.
Article
38. Wouters BJ. 2017; Hitting the target in IDH2 mutant AML. Blood. 130:693–4. DOI: 10.1182/blood-2017-06-790394. PMID: 28798056.
Article
39. Fathi AT, DiNardo CD, Kline I, et al. 2018; Differentiation syndrome associated with enasidenib, a selective inhibitor of mutant isocitrate dehydrogenase 2: analysis of a phase 1/2 study. JAMA Oncol. 4:1106–10. DOI: 10.1001/jamaoncol.2017.4695. PMID: 29346478. PMCID: PMC5885269.
40. Megías-Vericat JE, Ballesta-López O, Barragán E, Montesinos P. 2019; IDH1-mutated relapsed or refractory AML: current challenges and future prospects. Blood Lymphat Cancer. 9:19–32. DOI: 10.2147/BLCTT.S177913. PMID: 31413655. PMCID: PMC6663038.
41. Juárez-Salcedo LM, Desai V, Dalia S. 2019; Venetoclax: evidence to date and clinical potential. Drugs Context. 8:212574. DOI: 10.7573/dic.212574. PMID: 31645879. PMCID: PMC6788387.
Article
42. DiNardo CD, Pratz K, Pullarkat V, et al. 2019; Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 133:7–17. DOI: 10.1182/blood-2018-08-868752. PMID: 30361262. PMCID: PMC6318429.
Article
43. Wei AH, Strickland SA Jr, Hou JZ, et al. 2019; Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 37:1277–84. DOI: 10.1200/JCO.18.01600. PMID: 30892988. PMCID: PMC6524989.
Article
44. Goldsmith SR, Lovell AR, Schroeder MA. 2019; Glasdegib for the treatment of adult patients with newly diagnosed acute myeloid leukemia or high-grade myelodysplastic syndrome who are elderly or otherwise unfit for standard induction chemotherapy. Drugs Today (Barc). 55:545–62. DOI: 10.1358/dot.2019.55.9.3020160. PMID: 31584572.
Article
45. Wolska-Washer A, Robak T. 2019; Glasdegib in the treatment of acute myeloid leukemia. Future Oncol. 15:3219–32. DOI: 10.2217/fon-2019-0171. PMID: 31432695.
Article
46. Terao T, Minami Y. 2019; Targeting hedgehog (Hh) pathway for the acute myeloid leukemia treatment. Cells. 8:312. DOI: 10.3390/cells8040312. PMID: 30987263. PMCID: PMC6523210.
Article
47. Cortes JE, Heidel FH, Hellmann A, et al. 2019; Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 33:379–89. DOI: 10.1038/s41375-018-0312-9. PMID: 30555165. PMCID: PMC6365492.
Article
48. Agyeman AA, Ofori-Asenso R. 2015; Perspective: does personalized medicine hold the future for medicine? J Pharm Bioallied Sci. 7:239–44. DOI: 10.4103/0975-7406.160040. PMID: 26229361. PMCID: PMC4517329.
Article
49. Goldberger JJ, Buxton AE. 2013; Personalized medicine vs guideline-based medicine. JAMA. 309:2559–60. DOI: 10.1001/jama.2013.6629. PMID: 23712449.
Article
50. Rowe JM. 2019; Will new agents impact survival in AML? Best Pract Res Clin Haematol. 32:101094. DOI: 10.1016/j.beha.2019.101094. PMID: 31779986.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr