Anat Cell Biol.  2020 Jun;53(2):162-168. 10.5115/acb.19.189.

Three-dimensional microstructures of the intracortical canals in the animal model of osteoporosis

Affiliations
  • 1Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
  • 2Department of Biomedical Laboratory Science, Kyungnam College of Information & Technology, Busan, Korea
  • 3Department of Anatomy and Cell Biology, Dong-A University School of Medicine, Busan, Korea

Abstract

Osteoporosis is a major disease in aged women, increasing the risk for fractures accompanied by changes in the microarchitecture. The aim of this study was to investigate the three-dimensional (3D) histomorphology of femur diaphysis in the animal model for postmenopausal osteoporosis. The cortical bone of femur diaphysis of the rat was serially sectioned at a thickness of 5 μm and evaluated age-associated changes of the intracortical (osteonal) canal networks three-dimensionally. Cortical microstructures of 10-month old rats were not affected by ovariectomy. Intracortical canal networks were radial toward endosteal aspect and frequently interconnected across the neighboring canals with short arciform and irregular canals reminiscent for resorption spaces in ovarectomized 16-month old rats, contrary to intact canals in 16-month old control rat. Increased proportion of the periosteal circumference lamella and deformed endosteal regions with rare cortical canals hampered reconstructive histomorphology in ovarectomized rats of 26 month age. We have shown that 3D reconstruction of rat femur of the aged model over 16-month old is suitable methods that evaluate and microstructural change of the intracortical canals and cortical bone porosity by estrogen depletion.

Keyword

Intracortical canal; Femur; Three-dimensional reconstruction; Osteoporosis; Ovariectomy

Figure

  • Fig. 1 Specimens subjected to histomorphologic evaluation. (A) Significant weight gain of OVX group compared to the CON rat. (B) Scheme of the preparation of rat femur. The section planes for anterolateral aspect of a femur (dotted box) and the references for mid-diaphysis (lined box). A, anterior; CON, control; L, lateral; M, medial; mc, marrow cavity; OVX, ovariectomized; P, posterior.

  • Fig. 2 A histological section of 10-month old control rat. (A) Osteons (black arrows) were concentrated in the mid-cortical area (H&E, ×200). (B) Magnification of osteon with lacuna (red arrows) (H&E, ×100). Periosteal circumference lamella (black arrows). c, mid-cortical area; e, endothelial aspect; o, osteon; p, periosteal aspect.

  • Fig. 3 Changes of cortical microstructures in 16 months’ rats. (A) Cross section of the rat femur stained with hematoxylin and eosin. Compared to a CON rat, oval osteons toward endosteal aspect and coarse compact cancellous bone with unorganized tissues (yellow asterisks) are evident in an OVX rat (H&E, ×200). (B) Lateral views of the 3-dimensional structure of the cortical canal networks. Cortical canals are pre-dominantly separated and longitudinal in the entire area in a CON rat. In an OVX rat, radial canals adjacent to the endosteal region were convoluted and closely connected each other or disconnected (yellow arrows), while that of the periosteal region was straight. (C) Superior views of the 3-dimensional structure. The canal openings faced the marrow cavity much more than the periosteum. Osteonal canals with dichotomous branching oriented obliquely toward the endosteal aspect. All images have the same magnification. CON, control; e, endothelial aspect; OVX, ovariectomized; p, periosteal aspect.

  • Fig. 4 An age-related cortical bone loss coupled with the expansion of the medullary cavity and thickened periosteal circumference lamella in rats of 26-month old (H&E, ×200). Reduced volume of mid-cortical area in a CON rat (green arrows). Disorganized mid-cortical area and irregular endosteal surface with resorption cavities (red arrows), trabeculae (black arrows), and thickened periosteal circumference lamella (asterisk) in an OVX rat. CON, control; OVX, ovariectomized.

  • Fig. 5 Scheme of cross sections of femur diaphysis with aging and estrogen depletion. Decreased volume of the cortical bone (yellow) and the thickened periosteal circumference lamella (green) with aging resulted in the expansion of the marrow cavity and reduced dimension of the cortical stroma. Endosteal erosion of mid-cortical area hardened with the ovariectomy and menopause. c, mid-cortical area; mc, marrow cavity; pcl, periosteal circumference lamella.


Cited by  1 articles

A comparison, using X-ray micro-computed tomography, of the architecture of cancellous bone from the cervical, thoracic and lumbar spine using 240 vertebral bodies from 10 body donors
Guido Schröder, Benjamin Jabke, Marko Schulze, Andreas Wree, Heiner Martin, Olga Sahmel, Alexandra Doerell, Claus Maximilian Kullen, Reimer Andresen, Hans-Christof Schober
Anat Cell Biol. 2021;54(1):25-34.    doi: 10.5115/acb.20.269.


Reference

1. Wang J, Stein EM, Zhou B, Nishiyama KK, Yu YE, Shane E, Guo XE. 2016; Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures. Bone. 88:39–46. DOI: 10.1016/j.bone.2016.04.003. PMID: 27083398. PMCID: PMC4899124.
Article
2. Pavel OR, Popescu M, Novac L, Mogoantă L, Pavel LP, Vicaş RM, Trăistaru MR. 2016; Postmenopausal osteoporosis - clinical, biological and histopathological aspects. Rom J Morphol Embryol. 57:121–30. PMID: 27151697.
3. Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH. 2017; Aging, osteocytes, and mechanotransduction. Curr Osteoporos Rep. 15:401–11. DOI: 10.1007/s11914-017-0402-z. PMID: 28891009. PMCID: PMC5599455.
Article
4. Britz HM, Thomas CD, Clement JG, Cooper DM. 2009; The relation of femoral osteon geometry to age, sex, height and weight. Bone. 45:77–83. DOI: 10.1016/j.bone.2009.03.654. PMID: 19303955.
Article
5. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB. 1998; Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 23:275–81. DOI: 10.1016/S8756-3282(98)00104-5. PMID: 9737350.
Article
6. Kennedy OD, Brennan O, Mauer P, Rackard SM, O'Brien FJ, Taylor D, Lee TC. 2008; The effects of increased intracortical remodeling on microcrack behaviour in compact bone. Bone. 43:889–93. DOI: 10.1016/j.bone.2008.07.235. PMID: 18706535.
Article
7. Lee KC, Maxwell A, Lanyon LE. 2002; Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading. Bone. 31:407–12. DOI: 10.1016/S8756-3282(02)00842-6.
Article
8. De Souza RL, Matsuura M, Eckstein F, Rawlinson SC, Lanyon LE, Pitsillides AA. 2005; Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone. 37:810–8. DOI: 10.1016/j.bone.2005.07.022. PMID: 16198164.
Article
9. Popp KL, Hughes JM, Martinez-Betancourt A, Scott M, Turkington V, Caksa S, Guerriere KI, Ackerman KE, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. 2017; Bone mass, microarchitecture and strength are influenced by race/ethnicity in young adult men and women. Bone. 103:200–8. DOI: 10.1016/j.bone.2017.07.014. PMID: 28712877.
Article
10. Carter DR, Orr TE, Fyhrie DP. 1989; Relationships between loading history and femoral cancellous bone architecture. J Biomech. 22:231–44. DOI: 10.1016/0021-9290(89)90091-2. PMID: 2722894.
Article
11. Ishihara A, Sasaki T, Debari K, Furuya R, Kawawa T, Ramamurthy NS, Golub LM. 1999; Effects of ovariectomy on bone morphology in maxillae of mature rats. J Electron Microsc (Tokyo). 48:465–9. DOI: 10.1093/oxfordjournals.jmicro.a023703. PMID: 10510861.
Article
12. Jee WS, Yao W. 2001; Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact. 1:193–207. PMID: 15758493.
13. Walker MD, Liu XS, Stein E, Zhou B, Bezati E, McMahon DJ, Udesky J, Liu G, Shane E, Guo XE, Bilezikian JP. 2011; Differences in bone microarchitecture between postmenopausal Chinese-American and white women. J Bone Miner Res. 26:1392–8. DOI: 10.1002/jbmr.352. PMID: 21305606. PMCID: PMC3558983.
Article
14. Johnston BD, Ward WE. 2015; The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. Biomed Res Int. 2015:635023. DOI: 10.1155/2015/635023. PMID: 26060817. PMCID: PMC4427799.
Article
15. Hsu PY, Tsai MT, Wang SP, Chen YJ, Wu J, Hsu JT. 2016; Cortical bone morphological and trabecular bone microarchitectural changes in the mandible and femoral neck of ovariectomized rats. PLoS One. 11:e0154367. DOI: 10.1371/journal.pone.0154367. PMID: 27127909. PMCID: PMC4851407.
Article
16. Farooq S, Leussink S, Sparrow LM, Marchini M, Britz HM, Manske SL, Rolian C. 2017; Cortical and trabecular morphology is altered in the limb bones of mice artificially selected for faster skeletal growth. Sci Rep. 7:10527. DOI: 10.1038/s41598-017-10317-x. PMID: 28874773. PMCID: PMC5585176.
Article
17. Popp KL, Xu C, Yuan A, Hughes JM, Unnikrishnan G, Reifman J, Bouxsein ML. 2019; Trabecular microstructure is influenced by race and sex in Black and White young adults. Osteoporos Int. 30:201–9. DOI: 10.1007/s00198-018-4729-9. PMID: 30397770.
Article
18. Basillais A, Bensamoun S, Chappard C, Brunet-Imbault B, Lemineur G, Ilharreborde B, Ho Ba Tho MC, Benhamou CL. 2007; Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements. J Orthop Sci. 12:141–8. DOI: 10.1007/s00776-006-1104-z. PMID: 17393269.
Article
19. Standring S. 2016. Gray's anatomy: the anatomical basis of clinical practice. 41th ed. Elsevier Health Sciences;Amsterdam: p. 88.
20. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrímsson B. 2007; Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone. 40:957–65. DOI: 10.1016/j.bone.2006.11.011. PMID: 17223618.
Article
21. Britz HM, Jokihaara J, Leppänen OV, Järvinen TL, Cooper DM. 2012; The effects of immobilization on vascular canal orientation in rat cortical bone. J Anat. 220:67–76. DOI: 10.1111/j.1469-7580.2011.01450.x. PMID: 22050694. PMCID: PMC3248664.
Article
22. Harrison KD, Cooper DM. 2015; Modalities for visualization of cortical bone remodeling: the past, present, and future. Front Endocrinol (Lausanne). 6:122. DOI: 10.3389/fendo.2015.00122. PMID: 26322017. PMCID: PMC4531299.
Article
23. Klein-Nulend J, van Oers RF, Bakker AD, Bacabac RG. 2015; Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J Biomech. 48:855–65. DOI: 10.1016/j.jbiomech.2014.12.007. PMID: 25582356.
Article
24. Danielsen CC, Mosekilde L, Svenstrup B. 1993; Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int. 52:26–33. DOI: 10.1007/BF00675623. PMID: 8453502.
Article
25. Sugiyama T, Oda H. 2017; Osteoporosis therapy: bone modeling during growth and aging. Front Endocrinol (Lausanne). 8:46. DOI: 10.3389/fendo.2017.00046. PMID: 28337176. PMCID: PMC5343005.
Article
26. Pazzaglia UE, Congiu T, Pienazza A, Zakaria M, Gnecchi M, Dell'orbo C. 2013; Morphometric analysis of osteonal architecture in bones from healthy young human male subjects using scanning electron microscopy. J Anat. 223:242–54. DOI: 10.1111/joa.12079. PMID: 23834434. PMCID: PMC3972045.
Article
27. Westerlind KC, Wronski TJ, Ritman EL, Luo ZP, An KN, Bell NH, Turner RT. 1997; Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A. 94:4199–204. DOI: 10.1073/pnas.94.8.4199. PMID: 9108129. PMCID: PMC20601.
Article
28. Andreasen CM, Delaisse JM, van der Eerden BCJ, van Leeuwen JPTM, Ding M, Andersen TL. 2018; Understanding age-induced cortical porosity in women: is a negative BMU balance in quiescent osteons a major contributor? Bone. 117:70–82. DOI: 10.1016/j.bone.2018.09.011. PMID: 30240959.
Article
29. Leppänen O, Sievänen H, Jokihaara J, Pajamäki I, Järvinen TL. 2006; Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res. 21:1231–7. DOI: 10.1359/jbmr.060511. PMID: 16869721.
Article
30. Kim JN, Lee JY, Shin KJ, Gil YC, Koh KS, Song WC. 2015; Haversian system of compact bone and comparison between endosteal and periosteal sides using three-dimensional reconstruction in rat. Anat Cell Biol. 48:258–61. DOI: 10.5115/acb.2015.48.4.258. PMID: 26770876. PMCID: PMC4701699.
Article
31. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J. 2009; Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density-is there a role for mechanosensing? Bone. 45:321–9. DOI: 10.1016/j.bone.2009.04.238. PMID: 19398046.
32. van Oers RF, Wang H, Bacabac RG. 2015; Osteocyte shape and mechanical loading. Curr Osteoporos Rep. 13:61–6. DOI: 10.1007/s11914-015-0256-1. PMID: 25663071. PMCID: PMC4352610.
Article
33. Hert J, Fiala P, Petrtýl M. 1994; Osteon orientation of the diaphysis of the long bones in man. Bone. 15:269–77. DOI: 10.1016/8756-3282(94)90288-7.
Article
34. Martin RB. 2007; Targeted bone remodeling involves BMU steering as well as activation. Bone. 40:1574–80. DOI: 10.1016/j.bone.2007.02.023. PMID: 17398173.
Article
35. Pazzaglia UE, Congiu T, Raspanti M, Ranchetti F, Quacci D. 2009; Anatomy of the intracortical canal system: scanning electron microscopy study in rabbit femur. Clin Orthop Relat Res. 467:2446–56. DOI: 10.1007/s11999-009-0806-x. PMID: 19330389. PMCID: PMC2866945.
Article
36. Pazzaglia UE, Congiu T, Marchese M, Zarattini G. 2011; Structural pattern and functional correlations of the long bone diaphyses intracortical vascular system: investigation carried out with China ink perfusion and multiplanar analysis in the rabbit femur. Microvasc Res. 82:58–65. DOI: 10.1016/j.mvr.2011.02.001. PMID: 21320513.
37. Pratt IV, Cooper DML. 2018; The effect of growth rate on the three-dimensional orientation of vascular canals in the cortical bone of broiler chickens. J Anat. 233:531–41. DOI: 10.1111/joa.12847. PMID: 30022496. PMCID: PMC6131975.
Article
38. Aaron JE. 2012; Periosteal Sharpey's fibers: a novel bone matrix regulatory system? Front Endocrinol (Lausanne). 3:98. DOI: 10.3389/fendo.2012.00098. PMID: 22908007. PMCID: PMC3414712.
Article
39. Jowsey J. 1966; Studies of Haversian systems in man and some animals. J Anat. 100(Pt 4):857–64. PMID: 4961449. PMCID: PMC1270831.
40. Singh IJ, Tonna EA, Gandel CP. 1974; A comparative histological study of mammalian bone. J Morphol. 144:421–37. DOI: 10.1002/jmor.1051440404. PMID: 4457648.
Article
41. Cvetkovic VJ, Najman SJ, Rajkovic JS, Zabar ALj, Vasiljevic PJ, Djordjevic LjB, Trajanovic MD. 2013; A comparison of the microarchitecture of lower limb long bones between some animal models and humans: a review. Vet Med. 58:339–51. DOI: 10.17221/6914-VETMED.
Article
42. Montoya-Sanhueza G, Chinsamy A. 2017; Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening. J Anat. 230:203–33. DOI: 10.1111/joa.12547. PMID: 27682432. PMCID: PMC5244287.
43. Shipov A, Zaslansky P, Riesemeier H, Segev G, Atkins A, Shahar R. 2013; Unremodeled endochondral bone is a major architectural component of the cortical bone of the rat (Rattus norvegicus). J Struct Biol. 183:132–40. DOI: 10.1016/j.jsb.2013.04.010. PMID: 23643909.
Article
44. Skedros JG, Sorenson SM, Jenson NH. 2007; Are distributions of secondary osteon variants useful for interpreting load history in mammalian bones? Cells Tissues Organs. 185:285–307. DOI: 10.1159/000102176. PMID: 17587802.
Article
45. Kanczler JM, Oreffo RO. 2008; Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 15:100–14. DOI: 10.22203/eCM.v015a08. PMID: 18454418.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr