Cancer Res Treat.  2020 Jan;52(1):167-180. 10.4143/crt.2019.126.

Clinical Outcomes of Postoperative Radiotherapy Following Radical Prostatectomy in Patients with Localized Prostate Cancer: A Multicenter Retrospective Study (KROG 18-01) of a Korean Population

Affiliations
  • 1The Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea
  • 2Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 3Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
  • 4Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • 5Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
  • 6Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University College of Medicine, Hwasun, Korea
  • 7Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
  • 8Department of Radiation Oncology, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, Seoul, Korea
  • 9Department of Radiation Oncology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
  • 10Department of Radiation Oncology, Eulji Hospital, Eulji University School of Medicine, Seoul, Korea
  • 11Department of Radiation Oncology, Dong-A University Hospital, Dong-A University School of Medicine, Busan, Korea
  • 12Department of Radiation Oncology, Chungnam National University College of Medicine, Daejeon, Korea

Abstract

Purpose
The purpose of this study was to investigate the clinical outcomes of postoperative radiotherapy (PORT) patients who underwent radical prostatectomy for localized prostate cancer.
Materials and Methods
Localized prostate cancer patients who received PORT after radical prostatectomy between 2001 and 2012 were identified retrospectively in a multi-institutional database. In total, 1,117 patients in 19 institutions were included. Biochemical failure after PORT was defined as prostate-specific antigen (PSA) ≥ nadir+2 after PORT or initiation of androgen deprivation therapy (ADT) for increasing PSA regardless of its value.
Results
Ten-year biochemical failure-free survival, clinical failure-free survival, distant metastasisfree survival, overall survival (OS), and cause-specific survival were 60.5%, 76.2%, 84.4%, 91.1%, and 96.6%, respectively, at a median of 84 months after PORT. Pre-PORT PSA ≤ 0.5 ng/ml and Gleason’s score ≤ 7 predicted favorable clinical outcomes, with 10-year OS rates of 92.5% and 94.1%, respectively. The 10-year OS rate was 82.7% for patients with a PSA > 1.0 ng/mL and 86.0% for patients with a Gleason score of 8-10. The addition of longterm ADT (≥ 12 months) to PORT improved OS, particularly in those with a Gleason score of 8-10 or ≥ T3b.
Conclusion
Clinical outcomes of PORT in a Korean prostate cancer population were very similar to those in Western countries. Lower Gleason score and serum PSA level at the time of PORT were significantly associated with favorable outcomes. Addition of long-term ADT (≥ 12 months) to PORT should be considered, particularly in unfavorable risk patients with Gleason scores of 8-10 or ≥ T3b.

Keyword

Prostatic neoplasms; Prostatectomy; Radiotherapy; Prostate-specific antigen

Figure

  • Fig. 1. Kaplan-Meier estimates of biochemical failure-free survival (BCFFS), clinical failure-free survival (CFFS), distant metastasis-free survival (DMFS), overall survival (OS) and cancer-specific survival (CSS) of all patients.

  • Fig. 2. Kaplan-Meier estimates of biochemical failure-free survival (BCFFS), clinical failure-free survival (CFFS), distant metastasis-free survival (DMFS), overall survival (OS), and cancer-specific survival (CSS) according to pre-postoperative radiotherapy prostate-specific antigen (PSA) level (A) and Gleason score (B). RT, radiation treatment.

  • Fig. 3. Effect of long-term androgen deprivation therapy (ADT) on overall survival in patients receiving postoperative radiotherapy (PORT). HR, hazard ratio; CI, confidence interval; PSA, prostate-specific antigen.

  • Fig. 4. Biochemical failure (BCF)–free survival (BCFFS) rates according to the biochemical failure definition. PSA, prostate-specific antigen; ADT, androgen deprivation therapy.


Reference

References

1. Roehl KA, Han M, Ramos CG, Antenor JA, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol. 2004; 172:910–4.
Article
2. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999; 281:1591–7.
Article
3. Trock BJ, Han M, Freedland SJ, Humphreys EB, DeWeese TL, Partin AW, et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA. 2008; 299:2760–9.
Article
4. Cotter SE, Chen MH, Moul JW, Lee WR, Koontz BF, Anscher MS, et al. Salvage radiation in men after prostate-specific antigen failure and the risk of death. Cancer. 2011; 117:3925–32.
Article
5. Bolla M, van Poppel H, Tombal B, Vekemans K, Da Pozzo L, de Reijke TM, et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet. 2012; 380:2018–27.
Article
6. Thompson IM, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D, et al. Adjuvant radiotherapy for pathological T3N0-M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol. 2009; 181:956–62.
Article
7. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005; 294:433–9.
Article
8. Pollack A, Low D, Watkins-Bruner D, Speight JL, Gomella LG, Amin MB, et al. Radiation Therapy Oncology Group RTOG 0534: a phase III trial of short term androgen deprivation with pelvic lymph node or prostate bed only radiotherapy (SPPORT) in prostate cancer patients with a rising PSA after radical prostatectomy. Philadelphia, PA: RTOG Foundation;2011.
9. Mohler JL, Armstrong AJ, Bahnson RR, D’Amico AV, Davis BJ, Eastham JA, et al. Prostate cancer, version 1.2016. J Natl Compr Canc Netw. 2016; 14:19–30.
10. Ghadjar P, Hayoz S, Bernhard J, Zwahlen DR, Holscher T, Gut P, et al. Acute toxicity and quality of life after dose-intensified salvage radiation therapy for biochemically recurrent prostate cancer after prostatectomy: first results of the randomized trial SAKK 09/10. J Clin Oncol. 2015; 33:4158–66.
11. Stish BJ, Pisansky TM, Harmsen WS, Davis BJ, Tzou KS, Choo R, et al. Improved metastasis-free and survival outcomes with early salvage radiotherapy in men with detectable prostate-specific antigen after prostatectomy for prostate cancer. J Clin Oncol. 2016; 34:3864–71.
Article
12. Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007; 25:2035–41.
Article
13. Stephenson AJ, Shariat SF, Zelefsky MJ, Kattan MW, Butler EB, Teh BS, et al. Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy. JAMA. 2004; 291:1325–32.
Article
14. Maurice MJ, Zhu H, Abouassaly R. Low use of immediate and delayed postoperative radiation for prostate cancer with adverse pathological features. J Urol. 2015; 194:972–6.
Article
15. Briganti A, Wiegel T, Joniau S, Cozzarini C, Bianchi M, Sun M, et al. Early salvage radiation therapy does not compromise cancer control in patients with pT3N0 prostate cancer after radical prostatectomy: results of a match-controlled multi-institutional analysis. Eur Urol. 2012; 62:472–87.
Article
16. Zietman AL, DeSilvio ML, Slater JD, Rossi CJ Jr, Miller DW, Adams JA, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA. 2005; 294:1233–9.
17. King CR, Kapp DS. Radiotherapy after prostatectomy: is the evidence for dose escalation out there? Int J Radiat Oncol Biol Phys. 2008; 71:346–50.
Article
18. Bernard JR Jr, Buskirk SJ, Heckman MG, Diehl NN, Ko SJ, Macdonald OK, et al. Salvage radiotherapy for rising prostate-specific antigen levels after radical prostatectomy for prostate cancer: dose-response analysis. Int J Radiat Oncol Biol Phys. 2010; 76:735–40.
Article
19. Cozzarini C, Montorsi F, Fiorino C, Alongi F, Bolognesi A, Da Pozzo LF, et al. Need for high radiation dose (≥ 70 gy) in early postoperative irradiation after radical prostatectomy: a single-institution analysis of 334 high-risk, node-negative patients. Int J Radiat Oncol Biol Phys. 2009; 75:966–74.
20. Latacz E, Dirix P, De Laere B, Van Dam P, Meijnders P, Huget P, et al. EP-1597: Dose-escalation for early salvage radiotherapy in prostate cancer improves bDFS. Radiother Oncol. 2018; 127(Suppl 1):S859–60.
Article
21. Caubet M, Pasquier D, Bertaut A, Grobois S, De Bari B, Kleinclauss F, et al. The role of whole pelvic nodal radiotherapy compared with prostate bed only radiotherapy after radical prostatectomy for prostate cancer. J Clin Oncol. 2018; 36(6 Suppl):93.
Article
22. Pollack A, Karrison TG, Balogh AG Jr, Low D, Bruner DW, Wefel JS, et al. Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiation therapy: The NRG Oncology/RTOG 0534 SPPORT Trial [Internet]. San Antonio: Henry B. Gonzalez Convention Center;2018. [cited 2018 Dec 20]. Available from: https://www.astro.org/ASTRO/media/ASTRO/Meetings%20and%20Education/PDFs/AM18/LBA18.pdf.
23. McLaughlin PW, Liss AL, Nguyen PL, Assimos DG, D’Amico AV, Gottschalk AR, et al. ACR Appropriateness Criteria(R) locally advanced, high-risk prostate cancer. Am J Clin Oncol. 2017; 40:1–10.
24. Lee SU, Cho KH. Multimodal therapy for locally advanced prostate cancer: the roles of radiotherapy, androgen deprivation therapy, and their combination. Radiat Oncol J. 2017; 35:189–97.
Article
25. Shipley WU, Seiferheld W, Lukka HR, Major PP, Heney NM, Grignon DJ, et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. N Engl J Med. 2017; 376:417–28.
Article
26. Carrie C, Hasbini A, de Laroche G, Richaud P, Guerif S, Latorzeff I, et al. Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial. Lancet Oncol. 2016; 17:747–56.
Article
27. Cozzarini C, Fiorino C, Da Pozzo LF, Alongi F, Berardi G, Bolognesi A, et al. Clinical factors predicting late severe urinary toxicity after postoperative radiotherapy for prostate carcinoma: a single-institute analysis of 742 patients. Int J Radiat Oncol Biol Phys. 2012; 82:191–9.
Article
28. Poortmans P, Bossi A, Vandeputte K, Bosset M, Miralbell R, Maingon P, et al. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. Radiother Oncol. 2007; 84:121–7.
Article
29. Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999; 353:267–72.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr