Anesth Pain Med.  2019 Oct;14(4):380-392. 10.17085/apm.2019.14.4.380.

Nociception monitoring tools using autonomic tone changes for intraoperative analgesic guidance in pediatric patients

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul, Korea. bglim9205@korea.ac.kr

Abstract

Nociception monitoring devices using changes in autonomic nervous system activity have been developed in numerous ways. Although there have been few studies conducted on children, compared to the relatively higher number of studies on adults, most of the nociception monitors in children, as in adults, appear to be more useful than the standard clinical practice that uses hemodynamic parameters in the evaluation and treatment of intraoperative nociception (pain) during general anesthesia. Particularly, when monitoring the surgical pleth index (SPI) in anesthetized children, the application of a new target range of SPI values (≤ 40) to the SPI monitoring criteria seems to be necessary for providing a more proper intraoperative analgesia. The analgesia nociception index (ANI) shows promising results in anesthetized adults, and recently, positive results along with cardiorespiratory coherence have been reported in pediatric patients. Newborn infant parasympathetic evaluation (NIPE) could be useful for providing adequate analgesia in newborns, infants, and children under 2 years of age in anesthetized or awake states. In cases of skin conductance and pupillometry, further studies are needed. Understanding the pros, cons, and limitations of these nociception monitoring tools will provide more effective and safe intraoperative analgesia to pediatric patients undergoing general anesthesia, and it may also help to plan and conduct promising research on the use of perioperative nociception monitoring in pediatric patients in the future.

Keyword

Analgesia; Anesthesia, general; Autonomic nervous system; Children; Monitoring, intraoperative; Nociception test; Pain measurement

MeSH Terms

Adult
Analgesia
Anesthesia, General
Autonomic Nervous System
Child
Hemodynamics
Humans
Infant
Infant, Newborn
Monitoring, Intraoperative
Nociception*
Pain Measurement
Skin

Figure

  • Fig. 1 Flow diagram for article search and inclusion criteria in the review.

  • Fig. 2 Comparison of photoplethysmographic (PPG) responses between adults and children for nociception during anesthesia. The schematic diagram shows the difference between adults and children on the change of the PPG signal during endotracheal intubation at anesthesia induction. The changes (decrease) of the photoplethysmographic amplitude (PPGA) and area under the curve (AUC) are smaller in children, and the resulting changes (increase) of the surgical pleth index (SPI) values are also smaller in children (refer [SPI ∞ 1/AUC]). That is, this difference in PPG responses for nociception may cause a difference in SPI values between adults and children. (A) PPG waveforms in adults. With an assumption that heartbeat interval (HBI) equals to PPGA (HBI = PPGA = α) and the data of SPI and heart rate in the reference (Mustola et al. Anesthesiol Res Pract 2010; 2010: 810721 [30]), the following equations can be established and thus the values of the variables can be assumed: α’ = α – 6.2 = 55.8 – 6.2 = 49.6; β = α – 22.8 = 55.8 – 22.8 = 33.0. (B) PPG waveforms in children. With an assumption that HBI equals to PPGA (HBI = PPGA = γ) and the data of SPI and heart rate in the reference (Kallio et al. Br J Anaesth 2008; 101: 383–9 [31]), the following equations can be established and thus the values of the variables can be assumed: γ’= γ – 8.2 = 60.8 – 8.2 = 52.6; δ = γ – 17.5 = 60.8 – 17.5 = 43.3. This figure is newly drawn based on the data of the two studies [30,31] that reported changes in SPI, heart rate, and PPGA during endotracheal intubation.


Reference

1. Cowen R, Stasiowska MK, Laycock H, Bantel C. Assessing pain objectively:the use of physiological markers. Anaesthesia. 2015; 70:828–47. DOI: 10.1111/anae.13018. PMID: 25772783.
2. Jiao Y, He B, Tong X, Xia R, Zhang C, Shi X. Intraoperative monitoring of nociception for opioid administration:a meta-analysis of randomized controlled trials. Minerva Anestesiol. 2019; 85:522–30. DOI: 10.23736/S0375-9393.19.13151-3. PMID: 30735017.
3. Tsuji H, Shirasaka C, Asoh T, Uchida I. Effects of epidural administration of local anaesthetics or morphine on postoperative nitrogen loss and catabolic hormones. Br J Surg. 1987; 74:421–5. DOI: 10.1002/bjs.1800740536. PMID: 3594144.
4. Kehlet H. Surgical stress:the role of pain and analgesia. Br J Anaesth. 1989; 63:189–95. DOI: 10.1093/bja/63.2.189. PMID: 2669908.
5. Wasylak TJ, Abbott FV, English MJ, Jeans ME. Reduction of postoperative morbidity following patient-controlled morphine. Can J Anaesth. 1990; 37:726–31. DOI: 10.1007/BF03006529. PMID: 2225288.
6. Furuya K, Shimizu R, Hirabayashi Y, Ishii R, Fukuda H. Stress hormone responses to major intra-abdominal surgery during and immediately after sevoflurane-nitrous oxide anaesthesia in elderly patients. Can J Anaesth. 1993; 40:435–9. DOI: 10.1007/BF03009513. PMID: 8390330.
7. Schricker T, Carli F, Schreiber M, Wachter U, Geisser W, Lat-termann R, et al. Propofol/sufentanil anesthesia suppresses the metabolic and endocrine response during, not after, lower abdominal surgery. Anesth Analg. 2000; 90:450–5. DOI: 10.1097/00000539-200002000-00039. PMID: 10648338.
8. Benarroch EE. Pain-autonomic interactions. Neurol Sci. 2006; 27(Suppl 2):130–3. DOI: 10.1007/s10072-006-0587-x. PMID: 16688616.
9. Huiku M, Uutela K, van Gils M, Korhonen I, Kymäläinen M, Meriläinen P, et al. Assessment of surgical stress during general anaesthesia. Br J Anaesth. 2007; 98:447–55. DOI: 10.1093/bja/aem004. PMID: 17329347.
10. Chen X, Thee C, Gruenewald M, Wnent J, Illies C, Hoecker J, et al. Comparison of surgical stress index-guided analgesia with standard clinical practice during routine general anesthesia:a pilot study. Anesthesiology. 2010; 112:1175–83. DOI: 10.1097/ALN.0b013e3181d3d641. PMID: 20418698.
11. Struys MM, Vanpeteghem C, Huiku M, Uutela K, Blyaert NB, Mortier EP. Changes in a surgical stress index in response to standardized pain stimuli during propofol-remifentanil infusion. Br J Anaesth. 2007; 99:359–67. DOI: 10.1093/bja/aem173. PMID: 17609248.
12. Bergmann I, Göhner A, Crozier TA, Hesjedal B, Wiese CH, Pop-ov AF, et al. Surgical pleth index-guided remifentanil administration reduces remifentanil and propofol consumption and shortens recovery times in outpatient anaesthesia. Br J Anaesth. 2013; 110:622–8. DOI: 10.1093/bja/aes426. PMID: 23220856.
13. Won YJ, Lim BG, Lee SH, Park S, Kim H, Lee IO, et al. Comparison of relative oxycodone consumption in surgical pleth index-guided analgesia versus conventional analgesia during sevoflurane anesthesia:a randomized controlled trial. Medicine (Baltimore). 2016; 95:4743. DOI: 10.1097/MD.0000000000004743. PMID: 27583920. PMCID: PMC5008604.
14. Bapteste L, Szostek AS, Chassard D, Desgranges FP, Bouvet L. Can intraoperative Surgical Pleth Index values be predictive of acute postoperative pain? Anaesth Crit Care Pain Med. 2019; 38:391–2. DOI: 10.1016/j.accpm.2018.05.004. PMID: 29857187.
15. Bonhomme V, Uutela K, Hans G, Maquoi I, Born JD, Brichant JF, et al. Comparison of the surgical Pleth IndexTM with haemodynamic variables to assess nociception-anti-nociception balance during general anaesthesia. Br J Anaesth. 2011; 106:101–11. DOI: 10.1093/bja/aeq291. PMID: 21051493.
16. Colombo R, Raimondi F, Rech R, Castelli A, Fossali T, Marchi A, et al. Surgical Pleth Index guided analgesia blunts the intraoperative sympathetic response to laparoscopic cholecystectomy. Minerva Anestesiol. 2015; 81:837–45. PMID: 25375311.
17. Jain N, Gera A, Sharma B, Sood J, Chugh P. Comparison of Surgical Pleth Index-guided analgesia using fentanyl versus conventional analgesia technique in laparoscopic cholecystectomy. Minerva Anestesiol. 2019; 85:358–65. DOI: 10.23736/S0375-9393.18.12954-3. PMID: 30605991.
18. Gruenewald M, Willms S, Broch O, Kott M, Steinfath M, Bein B. Sufentanil administration guided by surgical pleth index vs standard practice during sevoflurane anaesthesia:a randomized controlled pilot study. Br J Anaesth. 2014; 112:898–905. DOI: 10.1093/bja/aet485. PMID: 24535604.
19. Park JH, Lim BG, Kim H, Lee IO, Kong MH, Kim NS. Comparison of Surgical Pleth Index-guided analgesia with conventional analgesia practices in children:a randomized controlled trial. Anesthesiology. 2015; 122:1280–7. DOI: 10.1097/ALN.0000000000000650. PMID: 25815454.
20. Ilies C, Ludwigs J, Gruenewald M, Thee C, Hanf J, Hanss R, et al. The effect of posture and anaesthetic technique on the surgical pleth index. Anaesthesia. 2012; 67:508–13. DOI: 10.1111/j.1365-2044.2011.07051.x. PMID: 22324319.
21. Hans P, Verscheure S, Uutela K, Hans G, Bonhomme V. Effect of a fluid challenge on the Surgical Pleth Index during stable propofol-remifentanil anaesthesia. Acta Anaesthesiol Scand. 2012; 56:787–96. DOI: 10.1111/j.1399-6576.2011.02639.x. PMID: 22288889.
22. Ilies C, Gruenewald M, Ludwigs J, Thee C, Höcker J, Hanss R, et al. Evaluation of the surgical stress index during spinal and general anaesthesia. Br J Anaesth. 2010; 105:533–7. DOI: 10.1093/bja/aeq203. PMID: 20682572.
23. Ahonen J, Jokela R, Uutela K, Huiku M. Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br J Anaesth. 2007; 98:456–61. DOI: 10.1093/bja/aem035. PMID: 17350969.
24. Ledowski T, Sommerfield D, Slevin L, Conrad J, von Ungern-Sternberg BS. Surgical pleth index: prediction of postoperative pain in children? Br J Anaesth. 2017; 119:979–83. DOI: 10.1093/bja/aex300. PMID: 29028932.
25. Song IK, Ji SH, Kim EH, Lee JH, Kim JT, Kim HS. Comparison of the effect of different infusion rates of sufentanil on surgical stress index during cranial pinning in children under general anaesthesia:a randomized controlled study. BMC Anesthesiol. 2017; 17:167. DOI: 10.1186/s12871-017-0448-6. PMID: 29216820. PMCID: PMC5721662.
26. Harju J, Kalliomäki ML, Leppikangas H, Kiviharju M, Yli-Hank-ala A. Surgical pleth index in children younger than 24 months of age:a randomized double-blinded trial. Br J Anaesth. 2016; 117:358–64. DOI: 10.1093/bja/aew215. PMID: 27543530.
27. Sarkola T, Manlhiot C, Slorach C, Bradley TJ, Hui W, Mertens L, et al. Evolution of the arterial structure and function from infancy to adolescence is related to anthropometric and blood pressure changes. Arterioscler Thromb Vasc Biol. 2012; 32:2516–24. DOI: 10.1161/ATVBAHA.112.252114. PMID: 22837471.
28. Dinenno FA, Dietz NM, Joyner MJ. Aging and forearm postjunctional alpha-adrenergic vasoconstriction in healthy men. Circulation. 2002; 106:1349–54. DOI: 10.1161/01.CIR.0000028819.64790.BE. PMID: 12221051.
29. Dorlas JC, Nijboer JA. Photo-electric plethysmography as a monitoring device in anaesthesia Application and interpretation. Br J Anaesth. 1985; 57:524–30. DOI: 10.1093/bja/57.5.524. PMID: 3994887.
30. Mustola S, Parkkari T, Uutela K, Huiku M, Kymäläinen M, Toivonen J. Performance of surgical Stress Index during sevoflurane-fentanyl and isoflurane-fentanyl anesthesia. Anesthesiol Res Pract 2010. 2010; 810721. DOI: 10.1155/2010/810721. PMID: 20700429. PMCID: PMC2911596.
31. Kallio H, Lindberg LI, Majander AS, Uutela KH, Niskanen ML, Paloheimo MP. Measurement of surgical stress in anaesthetized children. Br J Anaesth. 2008; 101:383–9. DOI: 10.1093/bja/aen204. PMID: 18628266.
32. Won YJ, Lim BG, Kim YS, Lee M, Kim H. Usefulness of surgical pleth index-guided analgesia during general anesthesia:a systematic review and meta-analysis of randomized controlled trials. J Int Med Res. 2018; 46:4386–98. DOI: 10.1177/0300060518796749. PMID: 30198405. PMCID: PMC6259411.
33. Koenig J, Jarczok MN, Ellis RJ, Hillecke TK, Thayer JF. Heart rate variability and experimentally induced pain in healthy adults:a systematic review. Eur J Pain. 2014; 18:301–14. DOI: 10.1002/j.1532-2149.2013.00379.x. PMID: 23922336.
34. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology Heart rate variability:standards of measurement, physiological interpretation and clinical use. Circulation. 1996; 93:1043–65. PMID: 8598068.
35. Lindh V, Wiklund U, Håkansson S. Assessment of the effect of EMLA during venipuncture in the newborn by analysis of heart rate variability. Pain. 2000; 86:247–54. DOI: 10.1016/S0304-3959(00)00252-9. PMID: 10812254.
36. Lindh V, Wiklund U, Sandman PO, Håkansson S. Assessment of acute pain in preterm infants by evaluation of facial expression and frequency domain analysis of heart rate variability. Early Hum Dev. 1997; 48:131–42. DOI: 10.1016/S0378-3782(96)01851-8. PMID: 9131314.
37. Mazzeo AT, La Monaca E, Di Leo R, Vita G, Santamaria LB. Heart rate variability:a diagnostic and prognostic tool in anesthesia and intensive care. Acta Anaesthesiol Scand. 2011; 55:797–811. DOI: 10.1111/j.1399-6576.2011.02466.x. PMID: 21658013.
38. Vigo DE, Guinjoan SM, Scaramal M, Siri LN, Cardinali DP. Wavelet transform shows age-related changes of heart rate variability within independent frequency components. Auton Neu-rosci. 2005; 123:94–100. DOI: 10.1016/j.autneu.2005.10.004. PMID: 16293445.
39. Elghozi JL, Girard A, Laude D. Effects of drugs on the autonomic control of short-term heart rate variability. Auton Neurosci. 2001; 90:116–21. DOI: 10.1016/S1566-0702(01)00276-4. PMID: 11485277.
40. Pignotti M, Steinberg M. Heart rate variability as an outcome measure for Thought Field Therapy in clinical practice. J Clin Psychol. 2001; 57:1193–206. DOI: 10.1002/jclp.1086. PMID: 11526606.
41. Williams DP, Chelimsky G, McCabe NP, Koenig J, Singh P, Janata J, et al. Effects of chronic pelvic pain on heart rate variability in women. J Urol. 2015; 194:1289–94. DOI: 10.1016/j.juro.2015.04.101. PMID: 25963185.
42. Polster A, Friberg P, Gunterberg V, Öhman L, Le Nevé B, Törn- blom H, et al. Heart rate variability characteristics of patients with irritable bowel syndrome and associations with symptoms. Neurogastroenterol Motil. 2018; 30:13320. DOI: 10.1111/nmo.13320. PMID: 29575352.
43. Kato M, Komatsu T, Kimura T, Sugiyama F, Nakashima K, Shi-mada Y. Spectral analysis of heart rate variability during isoflurane anesthesia. Anesthesiology. 1992; 77:669–74. DOI: 10.1097/00000542-199210000-00009. PMID: 1416163.
44. Unoki T, Grap MJ, Sessler CN, Best AM, Wetzel P, Hamilton A, et al. Autonomic nervous system function and depth of sedation in adults receiving mechanical ventilation. Am J Crit Care. 2009; 18:42–50. DOI: 10.4037/ajcc2009509. PMID: 19116404. PMCID: PMC3690647.
45. Latson TW, O'Flaherty D. Effects of surgical stimulation on autonomic reflex function:assessment by changes in heart rate variability. Br J Anaesth. 1993; 70:301–5. DOI: 10.1093/bja/70.3.301. PMID: 8471374.
46. Jeanne M, Logier R, De Jonckheere J, Tavernier B. Validation of a graphic measurement of heart rate variability to assess analgesia/nociception balance during general anesthesia. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:1840–3. DOI: 10.1109/IEMBS.2009.5332598. PMID: 19963520.
47. Jeanne M, Logier R, De Jonckheere J, Tavernier B. Heart rate variability during total intravenous anesthesia:effects of nociception and analgesia. Auton Neurosci. 2009; 147:91–6. DOI: 10.1016/j.autneu.2009.01.005. PMID: 19201661.
48. Chang LH, Ma TC, Tsay SL, Jong GP. Relationships between pain intensity and heart rate variability in patients after abdominal surgery:a pilot study. Chin Med J (Engl). 2012; 125:1964–9. PMID: 22884062.
49. Meeuse JJ, Löwik MS, Löwik SA, Aarden E, van Roon AM, Gans RO, et al. Heart rate variability parameters do not correlate with pain intensity in healthy volunteers. Pain Med. 2013; 14:1192–201. DOI: 10.1111/pme.12133. PMID: 23659489.
50. De Jonckheere J, Rakza T, Logier R, Jeanne M, Jounwaz R, Storme L. Heart rate variability analysis for newborn infants prolonged pain assessment. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:7747–50. DOI: 10.1109/IEMBS.2011.6091909. PMID: 22256134.
51. Hummel P, van Dijk M. Pain assessment:current status and challenges. Semin Fetal Neonatal Med. 2006; 11:237–45. DOI: 10.1016/j.siny.2006.02.004. PMID: 16647310.
52. Faye PM, De Jonckheere J, Logier R, Kuissi E, Jeanne M, Rakza T, et al. Newborn infant pain assessment using heart rate variability analysis. Clin J Pain. 2010; 26:777–82. DOI: 10.1097/AJP.0b013e3181ed1058. PMID: 20973153.
53. Waxman JA, Pillai Riddell RR, Tablon P, Schmidt LA, Pinhasov A. Development of cardiovascular indices of acute pain responding in infants:a systematic review. Pain Res Manag 2016. 2016; 8458696. DOI: 10.1155/2016/8458696. PMID: 27445630. PMCID: PMC4904608.
54. Janda M, Bajorat J, Kudlik C, Pohl B, Schubert A, Nöldge-Schomburg G, et al. Comparison of heart rate variability response in children undergoing elective endotracheal intubation with and without neuromuscular blockade:a randomized controlled trial. Paediatr Anaesth. 2013; 23:1153–9. DOI: 10.1111/pan.12236. PMID: 23910069.
55. Toweill DL, Kovarik WD, Carr R, Kaplan D, Lai S, Bratton S, et al. Linear and nonlinear analysis of heart rate variability during propofol anesthesia for short-duration procedures in children. Pediatr Crit Care Med. 2003; 4:308–14. DOI: 10.1097/01.PCC.0000074260.93430.6A. PMID: 12831412.
56. Upton HD, Ludbrook GL, Wing A, Sleigh JW. Intraoperative “Analgesia Nociception Index”-guided fentanyl administration during sevoflurane anesthesia in lumbar discectomy and laminectomy:a randomized clinical trial. Anesth Analg. 2017; 125:81–90. DOI: 10.1213/ANE.0000000000001984. PMID: 28598927.
57. Szental JA, Webb A, Weeraratne C, Campbell A, Sivakumar H, Leong S. Postoperative pain after laparoscopic cholecystectomy is not reduced by intraoperative analgesia guided by analgesia nociception index (ANI®) monitoring:a randomized clinical trial. Br J Anaesth. 2015; 114:640–5. DOI: 10.1093/bja/aeu411. PMID: 25540069.
58. Gruenewald M, Herz J, Schoenherr T, Thee C, Steinfath M, Bein B. Measurement of the nociceptive balance by Analgesia Nociception Index and Surgical Pleth Index during sevofluraneremifentanil anesthesia. Minerva Anestesiol. 2015; 81:480–9. PMID: 25032676.
59. Jeanne M, Clément C, De Jonckheere J, Logier R, Tavernier B. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J Clin Monit Comput. 2012; 26:289–94. DOI: 10.1007/s10877-012-9354-0. PMID: 22454275.
60. Julien-Marsollier F, Rachdi K, Caballero MJ, Ayanmanesh F, Vacher T, Horlin AL, et al. Evaluation of the analgesia nociception index for monitoring intraoperative analgesia in children. Br J Anaesth. 2018; 121:462–8. DOI: 10.1016/j.bja.2018.03.034. PMID: 30032886.
61. Sabourdin N, Arnaout M, Louvet N, Guye ML, Piana F, Constant I. Pain monitoring in anesthetized children:first assessment of skin conductance and analgesia-nociception index at different infusion rates of remifentanil. Paediatr Anaesth. 2013; 23:149–55. DOI: 10.1111/pan.12071. PMID: 23170802.
62. Weber F, Geerts NJE, Roeleveld HG, Warmenhoven AT, Li-ebrand CA. The predictive value of the heart rate variabilityderived Analgesia Nociception Index in children anaesthetized with sevoflurane:an observational pilot study. Eur J Pain. 2018; 22:1597–605. DOI: 10.1002/ejp.1242. PMID: 29754420. PMCID: PMC6175217.
63. Boselli E, Daniela-Ionescu M, Bégou G, Bouvet L, Dabouz R, Magnin C, et al. Prospective observational study of the noninvasive assessment of immediate postoperative pain using the analgesia/nociception index (ANI). Br J Anaesth. 2013; 111:453–9. DOI: 10.1093/bja/aet110. PMID: 23592690.
64. Boselli E, Bouvet L, Bégou G, Dabouz R, Davidson J, Deloste JY, et al. Prediction of immediate postoperative pain using the analgesia/nociception index:a prospective observational study. Br J Anaesth. 2014; 112:715–21. DOI: 10.1093/bja/aet407. PMID: 24322571.
65. Ledowski T, Tiong WS, Lee C, Wong B, Fiori T, Parker N. Analgesia nociception index:evaluation as a new parameter for acute postoperative pain. Br J Anaesth. 2013; 111:627–9. DOI: 10.1093/bja/aet111. PMID: 23611914.
66. Brouse CJ, Karlen W, Myers D, Cooke E, Stinson J, Lim J, et al. Wavelet transform cardiorespiratory coherence detects patient movement during general anesthesia. Conf Proc IEEE Eng Med Biol Soc 2011. 2011; 6114–7. DOI: 10.1109/IEMBS.2011.6091510. PMID: 22255734.
67. Brouse CJ, Karlen W, Dumont GA, Myers D, Cooke E, Stinson J, et al. Real-time cardiorespiratory coherence detects antinociception during general anesthesia. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012:3813–6. DOI: 10.1109/EMBC.2012.6346798. PMID: 23366759.
68. Brouse CJ, Karlen W, Dumont GA, Myers D, Cooke E, Stinson J, et al. Monitoring nociception during general anesthesia with cardiorespiratory coherence. J Clin Monit Comput. 2013; 27:551–60. DOI: 10.1007/s10877-013-9463-4. PMID: 23568315.
69. Butruille L, De jonckheere J, Marcilly R, Boog C, da Costa SB, Rakza T, et al. Development of a pain monitoring device focused on newborn infant applications:the NeoDoloris project. IRBM. 2015; 36:80–5. DOI: 10.1016/j.irbm.2015.01.005.
70. Weber F, Roeleveld HG, Geerts NJE, Warmenhoven AT, Schröder R, de Leeuw TG. The heart rate variability-derived Newborn Infant Parasympathetic Evaluation (NIPETM) Index in pediatric surgical patients from 0 to 2 years under sevoflurane anesthesia-a prospective observational pilot study. Paediatr Anaesth. 2019; 29:377–84. DOI: 10.1111/pan.13613. PMID: 30793426.
71. Zhang K, Wang S, Wu L, Song Y, Cai M, Zhang M, et al. Newborn infant parasympathetic evaluation (NIPE) as a predictor of hemodynamic response in children younger than 2 years under general anesthesia:an observational pilot study. BMC Anesthesiol. 2019; 19:98. DOI: 10.1186/s12871-019-0774-y. PMID: 31185928. PMCID: PMC6560820.
72. Valencia-Ramos J, Arnaez J, Calvo S, Gomez F, Del Blanco I. Observational study of newborn infant parasympathetic evaluation as a comfort system in awake patients admitted to a pediatric intensive care unit. J Clin Monit Comput. 2019; 33:749–55. DOI: 10.1007/s10877-019-00268-1. PMID: 30721390.
73. Cremillieux C, Makhlouf A, Pichot V, Trombert B, Patural H. Objective assessment of induced acute pain in neonatology with the Newborn Infant Parasympathetic Evaluation index. Eur J Pain. 2018; 22:1071–9. DOI: 10.1002/ejp.1191. PMID: 29369446.
74. Lidberg L, Wallin BG. Sympathetic skin nerve discharges in relation to amplitude of skin resistance responses. Psychophysiology. 1981; 18:268–70. DOI: 10.1111/j.1469-8986.1981.tb03033.x. PMID: 7291444.
75. Bini G, Hagbarth KE, Hynninen P, Wallin BG. Thermoregulatory and rhythm-generating mechanisms governing the sudomotor and vasoconstrictor outflow in human cutaneous nerves. J Physiol. 1980; 306:537–52. DOI: 10.1113/jphysiol.1980.sp013413. PMID: 7463376. PMCID: PMC1283022.
76. Storm H. Changes in skin conductance as a tool to monitor nociceptive stimulation and pain. Curr Opin Anaesthesiol. 2008; 21:796–804. DOI: 10.1097/ACO.0b013e3283183fe4. PMID: 18997532.
77. Storm H. Skin conductance and the stress response from heel stick in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000; 83:143–7. DOI: 10.1136/fn.83.2.F143. PMID: 10952711. PMCID: PMC1721148.
78. Hellerud BC, Storm H. Skin conductance and behaviour during sensory stimulation of preterm and term infants. Early Hum Dev. 2002; 70:35–46. DOI: 10.1016/S0378-3782(02)00070-1. PMID: 12441203.
79. Salavitabar A, Haidet KK, Adkins CS, Susman EJ, Palmer C, Storm H. Preterm infants'sympathetic arousal and associated behavioral responses to sound stimuli in the neonatal intensive care unit. Adv Neonatal Care. 2010; 10:158–66. DOI: 10.1097/ANC.0b013e3181dd6dea. PMID: 20505427.
80. Scaramuzzo RT, Faraoni M, Polica E, Pagani V, Vagli E, Boldrini A. Skin conductance variations compared to ABC scale for pain evaluation in newborns. J Matern Fetal Neonatal Med. 2013; 26:1399–403. DOI: 10.3109/14767058.2013.784262. PMID: 23566033.
81. Gjerstad AC, Wagner K, Henrichsen T, Storm H. Skin conductance versus the modified COMFORT sedation score as a measure of discomfort in artificially ventilated children. Pediatrics. 2008; 122:848–53. DOI: 10.1542/peds.2007-2545. PMID: 18829782.
82. Storm H, Myre K, Rostrup M, Stokland O, Lien MD, Raeder JC. Skin conductance correlates with perioperative stress. Acta Anaesthesiol Scand. 2002; 46:887–95. DOI: 10.1034/j.1399-6576.2002.460721.x. PMID: 12139547.
83. Gjerstad AC, Storm H, Hagen R, Huiku M, Qvigstad E, Raeder J. Comparison of skin conductance with entropy during intubation, tetanic stimulation and emergence from general anaesthesia. Acta Anaesthesiol Scand. 2007; 51:8–15. DOI: 10.1111/j.1399-6576.2006.01189.x. PMID: 17229227.
84. Ledowski T, Bromilow J, Wu J, Paech MJ, Storm H, Schug SA. The assessment of postoperative pain by monitoring skin conductance:results of a prospective study. Anaesthesia. 2007; 62:989–93. DOI: 10.1111/j.1365-2044.2007.05191.x. PMID: 17845649.
85. Ledowski T, Bromilow J, Paech MJ, Storm H, Hacking R, Schug SA. Monitoring of skin conductance to assess postoperative pain intensity. Br J Anaesth. 2006; 97:862–5. DOI: 10.1093/bja/ael280. PMID: 17060329.
86. Sabourdin N, Giral T, Wolk R, Louvet N, Constant I. Pupillary reflex dilation in response to incremental nociceptive stimuli in patients receiving intravenous ketamine. J Clin Monit Comput. 2018; 32:921–8. DOI: 10.1007/s10877-017-0072-5. PMID: 29043601.
87. Constant I, Nghe MC, Boudet L, Berniere J, Schrayer S, Seeman R, et al. Reflex pupillary dilatation in response to skin incision and alfentanil in children anaesthetized with sevoflurane:a more sensitive measure of noxious stimulation than the commonly used variables. Br J Anaesth. 2006; 96:614–9. DOI: 10.1093/bja/ael073. PMID: 16565227.
88. Connelly MA, Brown JT, Kearns GL, Anderson RA, St Peter SD, Neville KA. Pupillometry:a non-invasive technique for pain assessment in paediatric patients. Arch Dis Child. 2014; 99:1125–31. DOI: 10.1136/archdischild-2014-306286. PMID: 25187497. PMCID: PMC4395877.
89. Sabourdin N, Peretout JB, Khalil E, Guye ML, Louvet N, Con-stant I. Influence of depth of hypnosis on pupillary reactivity to a standardized tetanic stimulus in patients under propofolremifentanil target-controlled infusion:a crossover randomized pilot study. Anesth Analg. 2018; 126:70–7. DOI: 10.1213/ANE.0000000000001802. PMID: 28107273.
90. Bertrand AL, Garcia JB, Viera EB, Santos AM, Bertrand RH. Pupillometry:the influence of gender and anxiety on the pain response. Pain Physician. 2013; 16:257–66. PMID: 23703424.
91. Larson MD. The effect of antiemetics on pupillary reflex dilation during epidural/general anesthesia. Anesth Analg. 2003; 97:1652–6. DOI: 10.1213/01.ANE.0000090011.19809.93. PMID: 14633536.
92. Larson MD, Talke PO. Effect of dexmedetomidine, an alpha2adrenoceptor agonist, on human pupillary reflexes during general anaesthesia. Br J Clin Pharmacol. 2001; 51:27–33. DOI: 10.1046/j.1365-2125.2001.01311.x. PMID: 11167662. PMCID: PMC2014430.
93. Migeon A, Desgranges FP, Chassard D, Blaise BJ, De Queiroz M, Stewart A, et al. Pupillary reflex dilatation and analgesia nociception index monitoring to assess the effectiveness of regional anesthesia in children anesthetised with sevoflurane. Paediatr Anaesth. 2013; 23:1160–5. DOI: 10.1111/pan.12243. PMID: 23910160.
94. Raof RA, El Metainy SA, Alia DA, Wahab MA. Dexmedetomidine decreases the required amount of bupivacaine for ultrasound-guided transversus abdominis plane block in pediatrics patients:a randomized study. J Clin Anesth. 2017; 37:55–60. DOI: 10.1016/j.jclinane.2016.10.041. PMID: 28235529.
95. Ecoffey C, Lacroix F, Giaufré E, Orliaguet G, Courrèges P. Association des Anesthésistes Réanimateurs Pédiatriques d'Expression Française (ADARPEF) Epidemiology and morbidity of regional anesthesia in children:a follow-up one-year prospective survey of the French-Language Society of Paediatric Anaesthesiologists (ADARPEF). Paediatr Anaesth. 2010; 20:1061–9. DOI: 10.1111/j.1460-9592.2010.03448.x. PMID: 21199114.
96. Oberndorfer U, Marhofer P, Bösenberg A, Willschke H, Felfernig M, Weintraud M, et al. Ultrasonographic guidance for sciatic and femoral nerve blocks in children. Br J Anaesth. 2007; 98:797–801. DOI: 10.1093/bja/aem092. PMID: 17449890.
97. Chhabra A, Sinha R, Subramaniam R, Chandra P, Narang D, Garg SP. Comparison of sub-Tenon's block with i.v.fentanyl for paediatric vitreoretinal surgery. Br J Anaesth. 2009; 103:739–43. DOI: 10.1093/bja/aep230. PMID: 19706631.
98. Naja Z, Al-Tannir MA, Faysal W, Daoud N, Ziade F, El-Rajab M. A comparison of pudendal block vs dorsal penile nerve block for circumcision in children:a randomised controlled trial. Anaesthesia. 2011; 66:802–7. DOI: 10.1111/j.1365-2044.2011.06753.x. PMID: 21790518.
99. Song IK, Ji SH, Kim EH, Lee JH, Kim JT, Kim HS. Heart rate variability may be more useful than pulse transit time for confirming successful caudal block under general anesthesia in children. Anesth Pain Med. 2017; 12:140–6. DOI: 10.17085/apm.2017.12.2.140.
100. Dundar N, Kus A, Gurkan Y, Toker K, Solak M. Analgesia nociception index (ani) monitoring in patients with thoracic paravertebral block:a randomized controlled study. J Clin Monit Comput. 2018; 32:481–6. DOI: 10.1007/s10877-017-0036-9. PMID: 28631050.
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr