Korean J Radiol.  2019 Jun;20(6):894-908. 10.3348/kjr.2018.0540.

Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury

Affiliations
  • 1Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, China.
  • 2Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China. kevinzhlj@163.com
  • 3Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
  • 4Medical Imaging Teaching and Research Office, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Abstract

Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.

Keyword

Multiparametric magnetic resonance imaging; Functional MRI; Kidney transplantation; Allograft fibrosis; Allograft dysfunction

MeSH Terms

Allografts*
Diffusion
Fibrosis
Humans
Kidney Failure, Chronic
Kidney Transplantation
Magnetic Resonance Imaging*
Oxygen
Perfusion
Quality of Life
Transplants
Oxygen

Figure

  • Fig. 1 Comparison of diffusion images (ADCT, FP, and FA color-coded maps) between patients with poor and good renal allograft function.Top images (A–C): ADCT map (A), FP map (B), and FA map (C) of 18-year-old male with poor allograft function 1 year after transplantation (eGFR = 20 mL/min/1.73 m2). Bottom images (D–F): ADCT map (D), FP map (E), and FA map (F) of 35-year-old woman with good allograft function 14 months after transplantation (eGFR = 100 mL/min/1.73 m2). Lower ADCT, FP, and FA values were obtained in allograft with poor function. ADC = apparent diffusion coefficient, ADCT = total ADC, eGFR = estimated glomerular filtration rate, FA = fractional anisotropy, FP = perfusion fraction

  • Fig. 2 Comparison of diffusion tensor images (b0 images, FA maps, and whole-kidney tractography images) between patients with poor renal allograft function and those with and good renal allograft function.Top images (A–C): b0 image (A), FA map (B), and whole-kidney tractography image (C) of 28-year-old woman with poor allograft function (eGFR = 10 mL/min/1.73 m2). Bottom images (D–F): b0 image (D), FA map (E), and whole-kidney tractography image (F) of 22-year-old man with good allograft function (eGFR = 99 mL/min/1.73 m2) (Image courtesy of Wenjun Fan, Lihua Chen, Wen Shen. Department of Radiology, Tianjin First Center Hospital, China).

  • Fig. 3 DKI images and MK, κǁ, and κ⊥color-coded maps of 35-year-old woman with good renal allograft function (eGFR = 100 mL/min/1.73 m2).DKI images (A) with b-value of 0 s/mm2 and MK maps (B) of renal allograft. C, D. κǁ maps (C) and κ⊥ maps (D) of renal allograft. DKI= diffusion kurtosis imaging, MK = mean kurtosis

  • Fig. 4 Comparison of blood oxygen-level-dependent signals between patients with AR and good allograft function.A, B. Images of 28-year-old woman with AR 7 months after transplantation (eGFR = 86 mL/min/1.73 m2). C, D. Images of 58-year-old man with normal graft function 15 months after transplantation (eGFR = 72 mL/min/1.73 m2). Higher R2* values are calculated in medulla of normal functioning allograft compared with that with AR. Panel B shows AR on histology, while panel D shows histology of normally functioning allograft (periodic sciff-acid stain; original magnification, × 200). AR = acute rejection

  • Fig. 5 Comparison of ASL perfusion between patients with good and poor renal allograft function.A, C. Images from 35-year-old woman with good allograft function 14 years after transplantation (eGFR = 100 mL/min/1.73 m2). B, D. Images from 31-year-old woman with poor function allograft 5 months after transplantation (eGFR = 45 mL/min/1.73 m2). A, B. ASL images of renal allograft; C, D color-coded ASL maps, where blue color represents low perfusion and red represents high perfusion. Lower perfusion values are shown in allograft with poor function. ASL= arterial spin labeling

  • Fig. 6 MRE images demonstrate heterogeneous distribution of stiffness in kidney.A, B. Images from 49-year-old man with poor allograft function 12 years after transplantation (eGFR = 15 mL/min/1.73 m2). C, D. Images from 32-year-old man with good functioning allograft 4 years after transplantation (eGFR = 89 mL/min/1.73 m2). A, C. Anatomic T2 weighted images of kidney allografts; B, D MRE stiffness maps, where blue color represents softer tissue and red represents stiffer tissue. MRE= magnetic resonance elastography


Reference

1. Cavallo MC, Sepe V, Conte F, Abelli M, Ticozzelli E, Bottazzi A, et al. Cost-effectiveness of kidney transplantation from DCD in Italy. Transplant Proc. 2014; 46:3289–3296. PMID: 25498039.
Article
2. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012; 379:815–822. PMID: 22386035.
Article
3. Liu ZH. Nephrology in China. Nat Rev Nephrol. 2013; 9:523–528. PMID: 23877587.
Article
4. Aubert O, Kamar N, Vernerey D, Viglietti D, Martinez F, Duong-Van-Huyen JP, et al. Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study. BMJ. 2015; 351:h3557. PMID: 26232393.
Article
5. Goldberg RJ, Weng FL, Kandula P. Acute and chronic allograft dysfunction in kidney transplant recipients. Med Clin North Am. 2016; 100:487–503. PMID: 27095641.
Article
6. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med. 2012; 156:785–795. W-270W-271W-272W-273W-274W-275W-276W-277W-278PMID: 22312131.
7. Moreno CC, Mittal PK, Ghonge NP, Bhargava P, Heller MT. Imaging complications of renal transplantation. Radiol Clin North Am. 2016; 54:235–249. PMID: 26896222.
Article
8. Azancot MA, Moreso F, Salcedo M, Cantarell C, Perello M, Torres IB, et al. The reproducibility and predictive value on outcome of renal biopsies from expanded criteria donors. Kidney Int. 2014; 85:1161–1168. PMID: 24284518.
9. Wang YT, Li YC, Yin LL, Pu H, Chen JY. Functional assessment of transplanted kidneys with magnetic resonance imaging. World J Radiol. 2015; 7:343–349. PMID: 26516431.
Article
10. Ljimani A, Wittsack HJ. Functional MRI in transplanted kidneys. Abdom Radiol (NY). 2018; 43:2615–2624. PMID: 29556702.
Article
11. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World J Radiol. 2016; 8:785–798. PMID: 27721941.
Article
12. Eisenberger U, Thoeny HC, Binser T, Gugger M, Frey FJ, Boesch C, et al. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol. 2010; 20:1374–1383. PMID: 20013274.
Article
13. Kaul A, Sharma RK, Gupta RK, Lal H, Yadav A, Bhadhuria D, et al. Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients. Saudi J Kidney Dis Transpl. 2014; 25:1143–1147. PMID: 25394428.
Article
14. Thoeny HC, Zumstein D, Simon-Zoula S, Eisenberger U, De Keyzer F, Hofmann L, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology. 2006; 241:812–821. PMID: 17114628.
Article
15. Vermathen P, Binser T, Boesch C, Eisenberger U, Thoeny HC. Three-year follow-up of human transplanted kidneys by diffusion-weighted MRI and blood oxygenation level-dependent imaging. J Magn Reson Imaging. 2012; 35:1133–1138. PMID: 22180302.
Article
16. Palmucci S, Mauro LA, Veroux P, Failla G, Milone P, Ettorre GC, et al. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys: preliminary findings. Transplant Proc. 2011; 43:960–966. PMID: 21620026.
Article
17. Palmucci S, Mauro LA, Failla G, Foti PV, Milone P, Sinagra N, et al. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys: updating results in 35 patients. Transplant Proc. 2012; 44:1884–1888. PMID: 22974862.
Article
18. Eisenberger U, Binser T, Thoeny HC, Boesch C, Frey FJ, Vermathen P. Living renal allograft transplantation: diffusion-weighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology. 2014; 270:800–808. PMID: 24475796.
Article
19. Kuai ZX, Liu WY, Zhu YM. Effect of multiple perfusion components on pseudo-diffusion coefficient in intravoxel incoherent motion imaging. Phys Med Biol. 2017; 62:8197–8209. PMID: 28914609.
Article
20. Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology. 2011; 259:25–38. PMID: 21436095.
Article
21. Xie Y, Li Y, Wen J, Li X, Zhang Z, Li J, et al. Functional evaluation of transplanted kidneys with reduced field-of-view diffusion-weighted imaging at 3T. Korean J Radiol. 2018; 19:201–208. PMID: 29520177.
Article
22. Sulkowska K, Palczewski P, Wojcik D, Ciszek M, Sanko-Resmer J, Wojtowicz J, et al. Intravoxel incoherent motion imaging in monitoring the function of kidney allograft. Acta Radiol. 2018; 9. 23. [Epub ahead of print]. DOI: 10.1177/0284185118802598.
Article
23. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006; 51:527–539. PMID: 16950152.
Article
24. Morrell GR, Zhang JL, Lee VS. Magnetic resonance imaging of the fibrotic kidney. J Am Soc Nephrol. 2017; 28:2564–2570. PMID: 28784699.
Article
25. Kido A, Kataoka M, Yamamoto A, Nakamoto Y, Umeoka S, Koyama T, et al. Diffusion tensor MRI of the kidney at 3.0 and 1.5 tesla. Acta Radiol. 2010; 51:1059–1063. PMID: 20735277.
Article
26. Notohamiprodjo M, Dietrich O, Horger W, Horng A, Helck AD, Herrmann KA, et al. Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 tesla. Invest Radiol. 2010; 45:245–254. PMID: 20375845.
Article
27. Cheung JS, Fan SJ, Chow AM, Zhang J, Man K, Wu EX. Diffusion tensor imaging of renal ischemia reperfusion injury in an experimental model. NMR Biomed. 2010; 23:496–502. PMID: 20175152.
Article
28. Deger E, Celik A, Dheir H, Turunc V, Yardimci A, Torun M, et al. Rejection evaluation after renal transplantation using MR diffusion tensor imaging. Acta Radiol. 2018; 59:876–883. PMID: 28975804.
Article
29. Hueper K, Khalifa AA, Bräsen JH, Vo Chieu VD, Gutberlet M, Wintterle S, et al. Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging. 2016; 44:112–121. PMID: 26778459.
Article
30. Palmucci S, Cappello G, Attinà G, Foti PV, Siverino RO, Roccasalva F, et al. Diffusion weighted imaging and diffusion tensor imaging in the evaluation of transplanted kidneys. Eur J Radiol Open. 2015; 2:71–80. PMID: 26937439.
Article
31. Li Y, Lee MM, Worters PW, MacKenzie JD, Laszik Z, Courtier JL. Pilot study of renal diffusion tensor imaging as a correlate to histopathology in pediatric renal allografts. AJR Am J Roentgenol. 2017; 208:1358–1364. PMID: 28379715.
Article
32. Kaimori JY, Isaka Y, Hatanaka M, Yamamoto S, Ichimaru N, Fujikawa A, et al. Diffusion tensor imaging MRI with spin-echo sequence and long-duration measurement for evaluation of renal fibrosis in a rat fibrosis model. Transplant Proc. 2017; 49:145–152. PMID: 28104123.
Article
33. Hueper K, Gutberlet M, Rodt T, Gwinner W, Lehner F, Wacker F, et al. Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol. 2011; 21:2427–2433. PMID: 21710264.
Article
34. Lanzman RS, Ljimani A, Pentang G, Zgoura P, Zenginli H, Kropil P, et al. Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology. 2013; 266:218–225. PMID: 23169797.
Article
35. Fan WJ, Ren T, Li Q, Zuo PL, Long MM, Mo CB, et al. Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol. 2016; 26:567–575. PMID: 26017738.
Article
36. Fukunaga I, Hori M, Masutani Y, Hamasaki N, Sato S, Suzuki Y, et al. Effects of diffusional kurtosis imaging parameters on diffusion quantification. Radiol Phys Technol. 2013; 6:343–348. PMID: 23536232.
Article
37. Jensen JH, Helpern JA. MRI quantification of non-gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010; 23:698–710. PMID: 20632416.
Article
38. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010; 254:876–881. PMID: 20089718.
Article
39. Giannelli M, Toschi N. On the use of trace-weighted images in body diffusional kurtosis imaging. Magn Reson Imaging. 2016; 34:502–507. PMID: 26706136.
Article
40. Huang Y, Chen X, Zhang Z, Yan L, Pan D, Liang C, et al. MRI quantification of non-gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study. NMR Biomed. 2015; 28:154–161. PMID: 25392938.
Article
41. Pentang G, Lanzman RS, Heusch P, Müller-Lutz A, Blondin D, Antoch G, et al. Diffusion kurtosis imaging of the human kidney: a feasibility study. Magn Reson Imaging. 2014; 32:413–420. PMID: 24582288.
Article
42. Kjølby BF, Khan AR, Chuhutin A, Pedersen L, Jensen JB, Jakobsen S, et al. Fast diffusion kurtosis imaging of fibrotic mouse kidneys. NMR Biomed. 2016; 29:1709–1719. PMID: 27731906.
Article
43. Liu Y, Zhang GM, Peng X, Wen Y, Ye W, Zheng K, et al. Diffusional kurtosis imaging in assessing renal function and pathology of IgA nephropathy: a preliminary clinical study. Clin Radiol. 2018; 73:818–826. PMID: 29929904.
Article
44. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol. 2010; 298:F1078–F1094. PMID: 20200097.
Article
45. Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am. 2008; 16:613–625. PMID: 18926426.
Article
46. Malvezzi P, Bricault I, Terrier N, Bayle F. Evaluation of intrarenal oxygenation by blood oxygen level-dependent magnetic resonance imaging in living kidney donors and their recipients: preliminary results. Transplant Proc. 2009; 41:641–644. PMID: 19328943.
Article
47. Oostendorp M, de Vries EE, Slenter JM, Peutz-Kootstra CJ, Snoeijs MG, Post MJ, et al. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury. NMR Biomed. 2011; 24:194–200. PMID: 20954164.
Article
48. Niles DJ, Artz NS, Djamali A, Sadowski EA, Grist TM, Fain SB. Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using arterial spin labeling and blood oxygen level-dependent magnetic resonance imaging. Invest Radiol. 2016; 51:113–120. PMID: 26561047.
Article
49. Sadowski EA, Fain SB, Alford SK, Korosec FR, Fine J, Muehrer R, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology. 2005; 236:911–919. PMID: 16118170.
Article
50. Han F, Xiao W, Xu Y, Wu J, Wang Q, Wang H, et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant. 2008; 23:2666–2672. PMID: 18308769.
Article
51. Park SY, Kim CK, Park BK, Huh W, Kim SJ, Kim B. Evaluation of transplanted kidneys using blood oxygenation level-dependent MRI at 3 T: a preliminary study. AJR Am J Roentgenol. 2012; 198:1108–1114. PMID: 22528900.
Article
52. Park SY, Kim CK, Park BK, Kim SJ, Lee S, Huh W. Assessment of early renal allograft dysfunction with blood oxygenation level-dependent MRI and diffusion-weighted imaging. Eur J Radiol. 2014; 83:2114–2121. PMID: 25452096.
Article
53. Djamali A, Sadowski EA, Muehrer RJ, Reese S, Smavatkul C, Vidyasagar A, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol. 2007; 292:F513–F522. PMID: 17062846.
Article
54. Seif M, Eisenberger U, Binser T, Thoeny HC, Krauer F, Rusch A, et al. Renal blood oxygenation level-dependent imaging in longitudinal follow-up of donated and remaining kidneys. Radiology. 2016; 279:795–804. PMID: 26744926.
Article
55. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007; 242:647–649. PMID: 17213364.
Article
56. Guo BJ, Yang ZL, Zhang LJ. Gadolinium deposition in brain: current scientific evidence and future perspectives. Front Mol Neurosci. 2018; 11:335. PMID: 30294259.
Article
57. Boyken J, Niendorf T, Flemming B, Seeliger E. Gadolinium deposition in the brain after contrast-enhanced MRI: are the data valid. Radiology. 2018; 288:630–632. PMID: 29916783.
58. Ho ML. Arterial spin labeling: clinical applications. J Neuroradiol. 2018; 45:276–289. PMID: 30016705.
Article
59. Havsteen I, Damm Nybing J, Christensen H, Christensen AF. Arterial spin labeling: a technical overview. Acta Radiol. 2018; 59:1232–1238. PMID: 29313361.
Article
60. Sadowski EA, Djamali A, Wentland AL, Muehrer R, Becker BN, Grist TM, et al. Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging. 2010; 28:56–64. PMID: 19577402.
Article
61. Lanzman RS, Wittsack HJ, Martirosian P, Zgoura P, Bilk P, Kröpil P, et al. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol. 2010; 20:1485–1491. PMID: 19949799.
Article
62. Artz NS, Sadowski EA, Wentland AL, Djamali A, Grist TM, Seo S, et al. Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging. 2011; 33:1414–1421. PMID: 21591011.
Article
63. Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A, et al. Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging. 2011; 29:74–82. PMID: 20850241.
Article
64. Heusch P, Wittsack HJ, Blondin D, Ljimani A, Nguyen-Quang M, Martirosian P, et al. Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging. 2014; 40:84–89. PMID: 24123319.
Article
65. Hueper K, Gueler F, Bräsen JH, Gutberlet M, Jang MS, Lehner F, et al. Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol. 2015; 308:F1444–F1451. PMID: 25925250.
Article
66. Hueper K, Schmidbauer M, Thorenz A, Bräsen JH, Gutberlet M, Mengel M, et al. Longitudinal evaluation of perfusion changes in acute and chronic renal allograft rejection using arterial spin labeling in translational mouse models. J Magn Reson Imaging. 2017; 46:1664–1672. PMID: 28342287.
Article
67. Heusch P, Wittsack HJ, Heusner T, Buchbender C, Quang MN, Martirosian P, et al. Correlation of biexponential diffusion parameters with arterial spin-labeling perfusion MRI: results in transplanted kidneys. Invest Radiol. 2013; 48:140–144. PMID: 23249648.
68. Ren T, Wen CL, Chen LH, Xie SS, Cheng Y, Fu YX, et al. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging. 2016; 34:908–914. PMID: 27114341.
Article
69. Strupler M, Hernest M, Fligny C, Martin JL, Tharaux PL, Schanne-Klein MC. Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling. J Biomed Opt. 2008; 13:054041. PMID: 19021421.
Article
70. Park WD, Griffin MD, Cornell LD, Cosio FG, Stegall MD. Fibrosis with inflammation at one year predicts transplant functional decline. J Am Soc Nephrol. 2010; 21:1987–1997. PMID: 20813870.
Article
71. Costa JS, Alves R, Sousa V, Marinho C, Romaozinho C, Santos L, et al. Fibrogenesis in kidney transplant: dysfunction progress biomarkers. Transplant Proc. 2017; 49:787–791. PMID: 28457395.
Article
72. Yin M, Kolipaka A, Woodrum DA, Glaser KJ, Romano AJ, Manduca A, et al. Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model. J Magn Reson Imaging. 2013; 38:809–815. PMID: 23418135.
Article
73. Jiang X, Asbach P, Streitberger KJ, Thomas A, Hamm B, Braun J, et al. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix. Eur Radiol. 2014; 24:3025–3033. PMID: 25038856.
Article
74. Dittmann F, Hirsch S, Tzschätzsch H, Guo J, Braun J, Sack I. In vivo wideband multifrequency MR elastography of the human brain and liver. Magn Reson Med. 2016; 76:1116–1126. PMID: 26485494.
Article
75. Hiscox LV, Johnson CL, Barnhill E, McGarry MD, Huston J, van Beek EJ, et al. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Phys Med Biol. 2016; 61:R401–R437. PMID: 27845941.
Article
76. Lee CU, Glockner JF, Glaser KJ, Yin M, Chen J, Kawashima A, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol. 2012; 19:834–841. PMID: 22503893.
77. Marticorena Garcia SR, Fischer T, Dürr M, Gültekin E, Braun J, Sack I, et al. Multifrequency magnetic resonance elastography for the assessment of renal allograft function. Invest Radiol. 2016; 51:591–595. PMID: 27504796.
Article
78. Kirpalani A, Hashim E, Leung G, Kim JK, Krizova A, Jothy S, et al. Magnetic resonance elastography to assess fibrosis in kidney allografts. Clin J Am Soc Nephrol. 2017; 12:1671–1679. PMID: 28855238.
Article
79. Martens MH, Lambregts DM, Papanikolaou N, Heijnen LA, Riedl RG, zur Hausen A, et al. Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer. Invest Radiol. 2014; 49:29–34. PMID: 24002079.
80. Kline TL, Irazabal MV, Ebrahimi B, Hopp K, Udoji KN, Warner JD, et al. Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med. 2016; 75:1466–1473. PMID: 25974140.
Article
81. Wang F, Jiang R, Takahashi K, Gore J, Harris RC, Takahashi T, et al. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging. Magn Reson Imaging. 2014; 32:1125–1132. PMID: 25093632.
Article
82. Jiang K, Ferguson CM, Ebrahimi B, Tang H, Kline TL, Burningham TA, et al. Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology. 2017; 283:77–86. PMID: 27697008.
Article
83. Jiang K, Ferguson CM, Woollard JR, Zhu X, Lerman LO. Magnetization transfer magnetic resonance imaging noninvasively detects renal fibrosis in swine atherosclerotic renal artery stenosis at 3.0 T. Invest Radiol. 2017; 52:686–692. PMID: 28542095.
Article
Full Text Links
  • KJR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr