J Dent Rehabil Appl Sci.  2018 Mar;34(1):32-38. 10.14368/jdras.2018.34.1.32.

A 3 year prospective study of survival rate of narrow diameter implants

Affiliations
  • 1Department of Periodontology, College of Dentistry, Dankook University, Cheonan, Republic of Korea. perioshin@dankook.ac.kr
  • 2Department of Prosthodontics, College of Dentistry, Dankook University, Cheonan, Republic of Korea.

Abstract

PURPOSE
The purpose of present study was to retrospectively analyze the survival rate of narrow diameter implant less than 3.6 mm by initial stability and radiographic measurements.
MATERIALS AND METHODS
In total, 24 patients who received 38 narrow diameter implants (≤ 3.6 mm in diameter, ≥ 7 mm in length) were enrolled in this retrospective study. The cumulative survival rate was calculated and various factors were investigated according to the implant platform diameter, body diameter, length, position, concomitant use of guided bone regeneration in implant placement and final prosthesis type. Initial stability was investigated with implant stability quotient (ISQ) value. The mesial and distal marginal bone level (MBL) change was calculated with radiography.
RESULTS
The overall survival rate was 92.11%. Mean ISQ value and MBL change of survival implants was 66.26 and 0.14 ± 0.31 mm, respectively. None of the implants with platform diameters larger than the body diameter failed.
CONCLUSION
In conclusion, the findings of present study suggest that narrow diameter implant could be predictable treatment in narrow alveolar ridge.

Keyword

narrow implant; survival rate; resonance frequency analysis

MeSH Terms

Alveolar Process
Bone Regeneration
Humans
Prospective Studies*
Prostheses and Implants
Radiography
Retrospective Studies
Survival Rate*

Reference

References

1. Jung RE, Fenner N, Hämmerle CH, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12-14 years. Clin Oral Implants Res. 2013; 24:1065–73. DOI: 10.1111/j.1600-0501.2012.02522.x. PMID: 22697628.
2. Chiapasco M, Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin Oral Implants Res. 2009; 20(Suppl4):113–23. DOI: 10.1111/j.1600-0501.2009.01781.x. PMID: 19663958.
3. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, Belser UC, Lang NP. Longterm evaluation of non-submerged ITI implants. Part 1:8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res. 1997; 8:161–72. DOI: 10.1034/j.1600-0501.1997.080302.x. PMID: 9586460.
4. Bornstein MM, Schmid B, Belser UC, Lussi A, Buser D. Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface. 5-year results of a prospective study in partially edentulous patients. Clin Oral Implants Res. 2005; 16:631–8. DOI: 10.1111/j.1600-0501.2005.01209.x. PMID: 16307568.
5. Klein MO, Schiegnitz E, Al-Nawas B. Systematic review on success of narrow-diameter dental implants. Int J Oral Maxillofac Implants. 2014; 29(Suppl):43–54. DOI: 10.11607/jomi.2014suppl.g1.3. PMID: 24660189.
6. Davarpanah M, Martinez H, Tecucianu JF, Celletti R, Lazzara R. Small-diameter implants: indications and contraindications. J Esthet Dent. 2000; 12:18694. DOI: 10.1111/j.1708-8240.2000.tb00221.x.
7. Quek CE, Tan KB, Nicholls JI. Load fatigue performance of a single-tooth implant abutment system: effect of diameter. Int J Oral Maxillofac Implants. 2006; 21:929–36. PMID: 17190303.
8. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015; 8:932–58. DOI: 10.3390/ma8030932. PMID: 28787980. PMCID: PMC5455450.
9. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998; 11:391–401. PMID: 9922731.
10. Greenstein G, Cavallaro J, Romanos G, Tarnow D. Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: a review. J Periodontol. 2008; 79:1317–29. DOI: 10.1902/jop.2008.070067. PMID: 18672980.
11. Natali AN, Carniel EL, Pavan PG. Investigation of viscoelastoplastic response of bone tissue in oral implants press fit process. J Biomed Mater Res B Appl Biomater. 2009; 91:868–75. DOI: 10.1002/jbm.b.31469. PMID: 19637368.
12. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996; 7:261–7. DOI: 10.1034/j.1600-0501.1996.070308.x. PMID: 9151590.
13. Konstantinović VS, Ivanjac F, Lazić V, Djordjević I. Assessment of implant stability by resonant frequency analysis. Vojnosanit Pregl. 2015; 72:169–74. DOI: 10.2298/VSP130801063K. PMID: 25831910.
14. Suzuki S, Kobayashi H, Ogawa T. Implant stability change and osseointegration speed of immediately loaded photofunctionalized implants. Implant Dent. 2013; 22:481–90. DOI: 10.1097/ID.0b013e31829deb62. PMID: 24021973.
15. Buser D, Weber HP, Lang NP. Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res. 1990; 1:33–40. DOI: 10.1034/j.1600-0501.1990.010105.x. PMID: 2099210.
16. Buser D, Mericske-Stern R, Dula K, Lang NP. Clinical experience with one-stage, non-submerged dental implants. Adv Dent Res. 1999; 13:153–61. DOI: 10.1177/08959374990130010501. PMID: 11276738.
17. Zinsli B, Sägesser T, Mericske E, Mericske-Stern R. Clinical evaluation of small-diameter ITI implants: a prospective study. Int J Oral Maxillofac Implants. 2004; 19:92–9. PMID: 14982361.
18. Romeo E, Lops D, Amorfini L, Chiapasco M, Ghisolfi M, Vogel G. Clinical and radiographic evaluation of small-diameter (3.3-mm) implants followed for 1-7 years: a longitudinal study. Clin Oral Implants Res. 2006; 17:139–48. DOI: 10.1111/j.1600-0501.2005.01191.x. PMID: 16584409.
19. Misch CE. Contemporary implant dentistry. 3rd ed. St. Louis: Mosby;2008. p. 1120.
20. Yuodelis RA, Weaver JD, Sapkos S. Facial and lingual contours of artificial complete crown restorations and their effects on the periodontium. J Prosthet Dent. 1973; 29:61–6. DOI: 10.1016/0022-3913(73)90140-6.
21. Reeves WG. Restorative margin placement and periodontal health. J Prosthet Dent. 1991; 66:733–6. DOI: 10.1016/0022-3913(91)90405-L.
22. Shemtov-Yona K, Rittel D, Machtei EE, Levin L. Effect of dental implant diameter on fatigue performance. Part II: failure analysis. Clin Implant Dent Relat Res. 2014; 16:178–84. DOI: 10.1111/j.1708-8208.2012.00476.x. PMID: 22780872.
23. Arisan V, Bölükbaşi N, Ersanli S, Ozdemir T. Evaluation of 316 narrow diameter implants followed for 5-10 years: a clinical and radiographic retrospective study. Clin Oral Implants Res. 2010; 21:296–307. DOI: 10.1111/j.1600-0501.2009.01840.x. PMID: 20443792.
24. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G. Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants. 2004; 19:247–59. PMID: 15101597.
25. Mombelli A, Lang NP. The diagnosis and treatment of peri-implantitis. Periodontol 2000. 1998; 17:6376. DOI: 10.1111/j.1600-0757.1998.tb00124.x.
Full Text Links
  • JDRAS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr