Anesth Pain Med.  2018 Jul;13(3):248-255. 10.17085/apm.2018.13.3.248.

Anesthesia research in the artificial intelligence era

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea. spss@snuh.org

Abstract

A noteworthy change in recent medical research is the rapid increase of research using big data obtained from electrical medical records (EMR), order communication systems (OCS), and picture archiving and communication systems (PACS). It is often difficult to apply traditional statistical techniques to research using big data because of the vastness of the data and complexity of the relationships. Therefore, the application of artificial intelligence (AI) techniques which can handle such problems is becoming popular. Classical machine learning techniques, such as k-means clustering, support vector machine, and decision tree are still efficient and useful for some research problems. The deep learning techniques, such as multi-layer perceptron, convolutional neural network, and recurrent neural network have been spotlighted by the success of deep belief networks and convolutional neural networks in solving various problems that are difficult to solve by conventional methods. The results of recent research using artificial intelligence techniques are comparable to human experts. This article introduces technologies that help researchers conduct medical research and understand previous literature in the era of AI.

Keyword

Artificial intelligence; Big data; Machine learning; Medical research
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2021 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr