Korean J Dent Mater.  2018 Dec;45(4):257-274. 10.14815/kjdm.2018.45.4.257.

Effects of acid-treatment conditions on the surface properties of the RBM treated titanium implants

Affiliations
  • 1Department of Dental Biomaterials Science, School of Dentistry, Seoul National University, Seoul, Korea. nowick@snu.ac.lr

Abstract

The purpose of this study was to evaluate the effect of acid-treatment conditions on the surface properties of the RBM (Resorbable Blast Media) treated titanium. Disk typed cp-titanium specimens were prepared and RBM treatments was performed with calcium phosphate ceramic powder. Acid solution was mixed using HCl, H2SO4 and deionized water with 4 different volume fraction. The RBM treated titanium was acid treated with different acid solutions at 3 different temperatures and for 3 different periods. After acid-treatments, samples were cleaned with 1 % Solujet solution for 30 min and deionized water for 30 min using ultrasonic cleanser, then dried in the electrical oven (37℃). Weight of samples before and after acid-treatment were measured using electric balance. Surface roughness was estimated using a confocal laser scanning microscopy, crystal phase in the surface of sample was analyzed using X-ray diffractometer. Surface morphology and components were evaluated using Scanning Electron Microscope (SEM) with Energy Dispersive X-ray spectroscopy (EDX) and X-ray Photoemission Spectroscopy (XPS). Values of the weight changes and surface roughness were statistically analyzed using Tukey-multiple comparison test (p=0.05). Weight change after acid treatments were significantly increased with increasing the concentration of H₂SO₄ and temperature of acid-solution. Acid-treatment conditions (concentration of H₂SO₄, temperature and time) did not produce consistent effects on the surface roughness, it showed the scattered results. From XRD analysis, formation of titanium hydrides in the titanium surface were observed in all specimens treated with acid-solutions. From XPS analysis, thin titanium oxide layer in the acid-treated specimens could be evaluated. Acid solution with 90℃ showed the strong effect on the titanium surface, it should be treated with caution to avoid the over-etching process.

Keyword

Cp-titanium; SLA; acid treatment conditions; Surface roughness; Titanium hydride

MeSH Terms

Calcium
Ceramics
Microscopy, Confocal
Photoelectron Spectroscopy
Spectrometry, X-Ray Emission
Surface Properties*
Titanium*
Ultrasonics
Water
Calcium
Titanium
Water
Full Text Links
  • KJDM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr