Int J Stem Cells.  2018 Nov;11(2):168-176. 10.15283/ijsc18079.

rBMSCs/ITGA5B1 Promotes Human Vascular Smooth Muscle Cell Differentiation via Enhancing Nitric Oxide Production

Affiliations
  • 1Central Laboratory of Liaocheng People’s Hospital, Liaocheng, Shandong, China. hychenmay5@126.com. hychenmay5@126.com
  • 2Department of Cardiology, Liaocheng People’s Hospital, Liaocheng, Shandong, China. msj6336@126.com. msj6336@126.com

Abstract

BACKGROUND AND OBJECTIVES
Previous studies have shown that integrins alpha5beta1 (ITGA5B1) gene-modified rat bone marrow mesenchymal stem cells (rBMSCs) could prevent cell anoikis and increase the nitric oxide (NO) production. Here we examined the capability of rBMSCs/ITGA5B1 on the phenotype modulation of Human Pulmonary Artery Smooth Muscle Cell (HPASMC) in vitro.
METHODS AND RESULTS
The synthetic (dedifferentiated) phenotype of HPASMC was induced by monocrotaline (MCT, 1μM) for 24 h and then co-cultured with rBMSCs/ITGA5B1 in a transwell culture system. The activation of NO/cGMP (nitric oxide/Guanosine-3"², 5"²-cyclic monophosphate) signaling was investigated in HPASMC. The changes of pro-inflammatory factors, oxidative stress, vasodilator, vasoconstrictor, contractile and synthetic genes, and the morphological changes of HPASMC were investigated. The results of this study showed that the NO/cGMP signal, endothelial nitric oxide synthase (eNOS) expression, the expression of the vasoprotective genes heme oxygenase-1 (HMOX1) and prostaglandin-endoperoxide synthase 2 (PTGS2) were increased, but the expression of transforming growth factor-β1 (TGF-β1), CCAAT/enhancer-binding proteins delta (Cebpd), Krüppel-like factor 4 (KLF4), and activating transcription factor 4 (ATF4) were reduced in MCT treated HPASMC co-cultured with rBMSCs/ITGA5B1. The synthetic smooth muscle cells (SMCs) phenotype markers thrombospondin-1, epiregulin and the vasoconstrictor endothelin (ET)-1, thromboxane A2 receptor (TbxA2R) were down-regulated, whereas the contractile SMCs phenotype marker transgelin expression was up-regulated by rBMSCs/ITGA5B1. Furthermore, rBMSCs/ITGA5B1 promoted the morphological restoration from synthetic (dedifferentiation) to contractile (differentiation) phenotype in MCT treated HPASMC.
CONCLUSIONS
rBMSCs/ITGA5B1 could inhibit inflammation and oxidative stress related genes to promote the HPASMC cell differentiation by activation NO/cGMP signal.

Keyword

Bone marrow derived mesenchymal stem cells; Integrin; Nitric oxide; Phenotypic transition; Human vascular smooth muscle cell (HPASMC)

MeSH Terms

Activating Transcription Factor 4
Animals
Anoikis
Bone Marrow
Cell Differentiation*
Endothelins
Epiregulin
Genes, Synthetic
Heme Oxygenase-1
Humans*
In Vitro Techniques
Inflammation
Integrins
Mesenchymal Stromal Cells
Monocrotaline
Muscle, Smooth, Vascular*
Myocytes, Smooth Muscle
Nitric Oxide Synthase Type III
Nitric Oxide*
Oxidative Stress
Phenotype
Prostaglandin-Endoperoxide Synthases
Pulmonary Artery
Rats
Receptors, Thromboxane A2, Prostaglandin H2
Activating Transcription Factor 4
Endothelins
Epiregulin
Heme Oxygenase-1
Integrins
Monocrotaline
Nitric Oxide
Nitric Oxide Synthase Type III
Prostaglandin-Endoperoxide Synthases
Receptors, Thromboxane A2, Prostaglandin H2

Figure

  • Fig. 1 The effect of rBMSCs/ITGA5B1 on NO/cGMP signal, eNOS expression and ROS production. (A) NO production was evaluated by measuring nitrite (the stable end product of NO) concentration by a nitric oxide colorimetric assay. (B) The mRNA expression of cGMP. (C) ROS production. ROS level was detected by the fluorescent probe DCFH-DA. The FITC-A Mean represents for the average fluorescence intensity. (D) The expression of eNOS protein was investigated by western-blot. 1: Control groups, 2: Model groups, 3: Vector groups, 4: ITGA5B1 groups. *p<0.05, **p<0.01.

  • Fig. 2 The regulation effects of rBMSCs/ITGA5B1 on the expression of stress response genes, pro-inflammatory factors and vasoconstrictors. (A, B) The mRNA expression of ATF4, HMOX1, PTGS2 and TbxA2R. (C, D) The protein expression of pro-inflammatory factors and vasoconstrictor. 1: Control groups, 2: Vector groups, 3: Model groups, 4: ITGA5B1 groups.

  • Fig. 3 Effect of rBMSCs/ITGA5B1 on morphological changes of MCT induced HPASMC. Compared to control groups, the cells showed fibroblast like and hypertrophy in model groups, whereas the cell shape in ITGA5B1 groups showed spindle-shaped with small size and similar in morphology to control groups. Bar=100 μm (10×).

  • Fig. 4 The mRNA expression of the thrombospondin, transgelin and epiregulin. The synthetic SMCs phenotype markers thrombospondin and epiregulin was reduced while the contractile SMCs phenotype marker transgelin expression was up-regulated by rBMSCs/ITGA5B1.


Reference

References

1. Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017; 367:643–649. DOI: 10.1007/s00441-016-2539-y. PMCID: 5408737.
Article
2. Coll-Bonfill N, de la Cruz-Thea B, Pisano MV, Musri MM. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch. 2016; 468:1071–1087. DOI: 10.1007/s00424-016-1821-x. PMID: 27109570.
Article
3. Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf). 2015; 214:33–50. DOI: 10.1111/apha.12466.
Article
4. Crosswhite P, Sun Z. Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J Hypertens. 2010; 28:201–212. DOI: 10.1097/HJH.0b013e328332bcdb. PMID: 20051913. PMCID: 2809140.
Article
5. Prudente A, Favaro WJ, Reis LO, Riccetto CL. Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis. Int Urol Nephrol. 2017; 49:597–605. DOI: 10.1007/s11255-017-1520-3. PMID: 28181115.
Article
6. Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, Hu F, Ballabh P, Podlutsky A, Losonczy G, de Cabo R, Mathew R, Wolin MS, Ungvari Z. Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension. 2009; 54:668–675. DOI: 10.1161/HYPERTENSIONAHA.109.133397. PMID: 19597040. PMCID: 2745434.
Article
7. Mónica FZ, Bian K, Murad F. The endothelium-dependent nitric oxide-cGMP pathway. Adv Pharmacol. 2016; 77:1–27. DOI: 10.1016/bs.apha.2016.05.001. PMID: 27451093.
Article
8. Nickel KF, Laux V, Heumann R, von Degenfeld G. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension. PLoS One. 2013; 8:e63504. DOI: 10.1371/journal.pone.0063504. PMID: 23785394. PMCID: 3681801.
Article
9. Goto J, Ishikawa K, Kawamura K, Watanabe Y, Matumoto H, Sugawara D, Maruyama Y. Heme oxygenase-1 reduces murine monocrotaline-induced pulmonary inflammatory responses and resultant right ventricular overload. Antioxid Redox Signal. 2002; 4:563–568. DOI: 10.1089/15230860260220058. PMID: 12230867.
Article
10. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009; 18:683–692. DOI: 10.1089/scd.2008.0253.
Article
11. Nasri F, Mohtasebi MS, Hashemi E, Zarrabi M, Gholijani N, Sarvestani EK. Therapeutic efficacy of mesenchymal stem cells and mesenchymal stem cells-derived neural progenitors in experimental autoimmune encephalomyelitis. Int J Stem Cells. 2018; 11:68–77. DOI: 10.15283/ijsc17052. PMID: 29699380. PMCID: 5984060.
Article
12. Chen HY, Pan L, Yang HL, Xia P, Yu WC, Tang WQ, Zhang YX, Chen SF, Xue YZ, Wang LX. Integrin alpha5beta1 suppresses rBMSCs anoikis and promotes nitric oxide production. Biomed Pharmacother. 2018; 99:1–8. DOI: 10.1016/j.biopha.2018.01.038. PMID: 29324307.
Article
13. Chen H, Yang H, Yue H, Strappe PM, Xia P, Pan L, Zhang Y, Chai S, Chen S, Ma L, Wang L. Mesenchymal Stem Cells Expressing eNOS and a Cav1 Mutant Inhibit Vascular Smooth Muscle Cell Proliferation in a Rat Model of Pulmonary Hypertension. Heart Lung Circ. 2017; 26:509–518. DOI: 10.1016/j.hlc.2016.08.002.
Article
14. Xia P, Chen HY, Chen SF, Wang L, Strappe PM, Yang HL, Zhou CH, Zhang X, Zhang YX, Ma LL, Wang L. The stimulatory effects of eNOS/F92A-Cav1 on NO production and angiogenesis in BMSCs. Biomed Pharmacother. 2016; 77:7–13. DOI: 10.1016/j.biopha.2015.11.001. PMID: 26796258.
Article
15. Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid Med Cell Longev. 2015; 2015:632902. DOI: 10.1155/2015/632902.
Article
16. Hood ED, Greineder CF, Dodia C, Han J, Mesaros C, Shuvaev VV, Blair IA, Fisher AB, Muzykantov VR. Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo. J Control Release. 2012; 163:161–169. DOI: 10.1016/j.jconrel.2012.08.031. PMID: 22974832. PMCID: 3495982.
Article
17. Lincoln TM, Wu X, Sellak H, Dey N, Choi CS. Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front Biosci. 2006; 11:356–367. DOI: 10.2741/1803.
Article
18. Ko CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci. 2015; 22:6. DOI: 10.1186/s12929-014-0110-2. PMID: 25591788. PMCID: 4318212.
Article
19. Feinberg MW, Cao Z, Wara AK, Lebedeva MA, Senbanerjee S, Jain MK. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem. 2005; 280:38247–38258. DOI: 10.1074/jbc.M509378200. PMID: 16169848.
Article
20. Autieri MV. Kruppel-like factor 4: transcriptional regulator of proliferation, or inflammation, or differentiation, or all three? Circ Res. 2008; 102:1455–1457. DOI: 10.1161/CIRCRESAHA.108.178954. PMID: 18566311. PMCID: 2754858.
21. Huang S, Chen P, Shui X, He Y, Wang H, Zheng J, Zhang L, Li J, Xue Y, Chen C, Lei W. Baicalin attenuates transforming growth factor-β1-induced human pulmonary artery smooth muscle cell proliferation and phenotypic switch by inhibiting hypoxia inducible factor-1α and aryl hydrocarbon receptor expression. J Pharm Pharmacol. 2014; 66:1469–1477. DOI: 10.1111/jphp.12273. PMID: 24835111.
Article
22. Iwasaki Y, Suganami T, Hachiya R, Shirakawa I, Kim-Saijo M, Tanaka M, Hamaguchi M, Takai-Igarashi T, Nakai M, Miyamoto Y, Ogawa Y. Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes. 2014; 63:152–161. DOI: 10.2337/db13-0757.
Article
23. Belhaj A, Dewachter L, Kerbaul F, Brimioulle S, Dewachter C, Naeije R, Rondelet B. Heme oxygenase-1 and inflammation in experimental right ventricular failure on prolonged overcirculation-induced pulmonary hypertension. PLoS One. 2013; 8:e69470. DOI: 10.1371/journal.pone.0069470. PMID: 23936023. PMCID: 3723896.
Article
24. Tamosiuniene R, Manouvakhova O, Mesange P, Saito T, Qian J, Sanyal M, Lin YC, Nguyen LP, Luria A, Tu AB, Sante JM, Rabinovitch M, Fitzgerald DJ, Graham BB, Habtezion A, Voelkel NF, Aurelian L, Nicolls MR. Dominant role for regulatory T cells in protecting females against pulmonary hypertension. Circ Res. 2018; 122:1689–1702. DOI: 10.1161/CIRCRESAHA.117.312058. PMID: 29545367. PMCID: 5993601.
Article
25. Hill MR, Papafili A, Booth H, Lawson P, Hubner M, Beynon H, Read C, Lindahl G, Marshall RP, McAnulty RJ, Laurent GJ. Functional prostaglandin-endoperoxide synthase 2 polymorphism predicts poor outcome in sarcoidosis. Am J Respir Crit Care Med. 2006; 174:915–922. DOI: 10.1164/rccm.200512-1839OC. PMID: 16840740.
Article
26. Peroni JF, Borjesson DL. Anti-inflammatory and immunomodulatory activities of stem cells. Vet Clin North Am Equine Pract. 2011; 27:351–362. DOI: 10.1016/j.cveq.2011.06.003. PMID: 21872763.
Article
27. Lee H, Lee JC, Kwon JH, Kim KC, Cho MS, Yang YS, Oh W, Choi SJ, Seo ES, Lee SJ, Wang TJ, Hong YM. The effect of umbilical cord blood derived mesenchymal stem cells in monocrotaline-induced pulmonary artery hypertension rats. J Korean Med Sci. 2015; 30:576–585. DOI: 10.3346/jkms.2015.30.5.576. PMID: 25931788. PMCID: 4414641.
Article
28. Vaillancourt M, Ruffenach G, Meloche J, Bonnet S. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension. Can J Cardiol. 2015; 31:407–415. DOI: 10.1016/j.cjca.2014.10.023. PMID: 25630876.
Article
29. Kumar R, Mickael C, Kassa B, Gebreab L, Robinson JC, Koyanagi DE, Sanders L, Barthel L, Meadows C, Fox D, Irwin D, Li M, McKeon BA, Riddle S, Dale Brown R, Morgan LE, Evans CM, Hernandez-Saavedra D, Bandeira A, Maloney JP, Bull TM, Janssen WJ, Stenmark KR, Tuder RM, Graham BB. TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nat Commun. 2017; 8:15494. DOI: 10.1038/ncomms15494.
Article
30. Takahashi M, Hayashi K, Yoshida K, Ohkawa Y, Komurasaki T, Kitabatake A, Ogawa A, Nishida W, Yano M, Monden M, Sobue K. Epiregulin as a major autocrine/paracrine factor released from ERK- and p38MAPK-activated vascular smooth muscle cells. Circulation. 2003; 108:2524–2529. DOI: 10.1161/01.CIR.0000096482.02567.8C. PMID: 14581411.
Article
31. Salmon M, Gomez D, Greene E, Shankman L, Owens GK. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22α promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res. 2012; 111:685–696. DOI: 10.1161/CIRCRESAHA.112.269811. PMID: 22811558. PMCID: 3517884.
Article
32. Chen H. Role of thromboxane A2 signaling in endothelium-dependent contractions of arteries. Prostaglandins Other Lipid Mediat. 2018; 134:32–37. DOI: 10.1016/j.prostaglandins.2017.11.004.
Article
33. Diehl KJ, Stauffer BL, Dow CA, Bammert TD, Brunjes DL, Greiner JJ, DeSouza CA. Chronic nebivolol treatment suppresses endothelin-1-mediated vasoconstrictor tone in adults with elevated blood pressure. Hypertension. 2016; 67:1196–1204. DOI: 10.1161/HYPERTENSIONAHA.115.06979. PMID: 27113048. PMCID: 4871319.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr