Obstet Gynecol Sci.  2018 Nov;61(6):662-668. 10.5468/ogs.2018.61.6.662.

Risk factors for cytological progression in HPV 16 infected women with ASC-US or LSIL: The Korean HPV cohort

Affiliations
  • 1Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, College of Medicine, Dankook University, Seoul, Korea. kimonc111@naver.com
  • 2Division of Viral Disease Research Center for Infectious Disease Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea.
  • 3Department of Obstetrics and Gynecology, Keimyung University Dongsan Medical Center, Daegu, Korea.
  • 4Department of Pathology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
  • 5Human Resource Biobank, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
  • 6Laboratory of R&D for Genomics, Cheil General Hospital and Women's Healthcare Center, College of Medicine, Dankook University, Seoul, Korea.
  • 7Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea.
  • 8Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
  • 9Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University, Seoul, Korea. jspark@catholic.ac.kr

Abstract


OBJECTIVE
This study was to identify the risk factors for cytological progression in women with atypical squamous cells of undetermined significance (ASC-US) or low-grade squamous intraepithelial lesions (LSIL).
METHODS
We analyzed data from women infected with the human papillomavirus (HPV) who participated in the Korean HPV cohort study. The cohort recruited women aged 20-60 years with abnormal cervical cytology (ASC-US or LSIL) from April 2010. All women were followed-up at every 6-month intervals with cervical cytology and HPV DNA testing.
RESULTS
Of the 1,158 women included, 654 (56.5%) and 504 (43.5%) women showed ASC-US and LSIL, respectively. At the time of enrollment, 143 women tested positive for HPV 16 (85 single and 58 multiple infections). Cervical cytology performed in the HPV 16-positive women showed progression in 27%, no change in 23%, and regression in 50% of the women at the six-month follow-up. The progression rate associated with HPV 16 infection was higher than that with infection caused by other HPV types (relative risk [RR], 1.75; 95% confidence interval [CI], 1.08-2.84; P=0.028). The cytological progression rate in women with persistent HPV 16 infection was higher than that in women with incidental or cleared infections (P < 0.001). Logistic regression analysis showed a significant relationship between cigarette smoking and cytological progression (RR, 4.15; 95% CI, 1.01-17.00).
CONCLUSION
The cytological progression rate in HPV 16-positive women with ASC-US or LSIL is higher than that in women infected with other HPV types. Additionally, cigarette smoking may play a role in cytological progression.

Keyword

Papillomaviridae; Smoking; Epidemiology

MeSH Terms

Atypical Squamous Cells of the Cervix*
Cohort Studies*
Epidemiology
Female
Follow-Up Studies
Human papillomavirus 16*
Human Papillomavirus DNA Tests
Humans
Logistic Models
Papillomaviridae
Risk Factors*
Smoking
Squamous Intraepithelial Lesions of the Cervix

Reference

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65:87–108.
Article
2. Jung KW, Won YJ, Oh CM, Kong HJ, Cho H, Lee DH, et al. Prediction of cancer incidence and mortality in Korea, 2015. Cancer Res Treat. 2015; 47:142–148.
Article
3. Jung KW, Won YJ, Oh CM, Kong HJ, Lee DH, Lee KH, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2014. Cancer Res Treat. 2017; 49:292–305.
Article
4. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999; 189:12–19.
Article
5. Choi YJ, Park JS. Clinical significance of human papillomavirus genotyping. J Gynecol Oncol. 2016; 27:e21.
Article
6. Cho HW, So KA, Lee JK, Hong JH. Type-specific persistence or regression of human papillomavirus genotypes in women with cervical intraepithelial neoplasia 1: a prospective cohort study. Obstet Gynecol Sci. 2015; 58:40–45.
Article
7. Koshiol J, Lindsay L, Pimenta JM, Poole C, Jenkins D, Smith JS. Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis. Am J Epidemiol. 2008; 168:123–137.
Article
8. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003; 348:518–527.
Article
9. Castellsagué X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol. 2008; 110:Suppl 2. S4–S7.
Article
10. Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J Natl Cancer Inst. 2005; 97:1072–1079.
Article
11. Cox JT, Schiffman M, Solomon D. ASCUS-LSIL Triage Study (ALTS) Group. Prospective follow-up suggests similar risk of subsequent cervical intraepithelial neoplasia grade 2 or 3 among women with cervical intraepithelial neoplasia grade 1 or negative colposcopy and directed biopsy. Am J Obstet Gynecol. 2003; 188:1406–1412.
Article
12. Pretorius RG, Peterson P, Azizi F, Burchette RJ. Subsequent risk and presentation of cervical intraepithelial neoplasia (CIN) 3 or cancer after a colposcopic diagnosis of CIN 1 or less. Am J Obstet Gynecol. 2006; 195:1260–1265.
Article
13. Chen EY, Tran A, Raho CJ, Birch CM, Crum CP, Hirsch MS. Histological ‘progression’ from low (LSIL) to high (HSIL) squamous intraepithelial lesion is an uncommon event and an indication for quality assurance review. Mod Pathol. 2010; 23:1045–1051.
Article
14. Kim JY, Nam BH, Lee JA. Is human papillomavirus genotype an influencing factor on radiotherapy outcome? Ambiguity caused by an association of HPV 18 genotype and adenocarcinoma histology. J Gynecol Oncol. 2011; 22:32–38.
Article
15. Lee WC, Lee SY, Koo YJ, Kim TJ, Hur SY, Hong SR, et al. Establishment of a Korea HPV cohort study. J Gynecol Oncol. 2013; 24:59–65.
Article
16. Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007; 121:621–632.
Article
17. Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol. 2012; 137:516–542.
Article
18. Wang SS, Zuna RE, Wentzensen N, Dunn ST, Sherman ME, Gold MA, et al. Human papillomavirus cofactors by disease progression and human papillomavirus types in the study to understand cervical cancer early endpoints and determinants. Cancer Epidemiol Biomarkers Prev. 2009; 18:113–120.
Article
19. Castellsagué X, Muñoz N. Chapter 3: cofactors in human papillomavirus carcinogenesis--role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr. 2003; 31:20–28.
20. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum. 2004; 83:1–1438.
21. Appleby P, Beral V, Berrington de González A, Colin D, Franceschi S, Goodill A, et al. Carcinoma of the cervix and tobacco smoking: collaborative reanalysis of individual data on 13,541 women with carcinoma of the cervix and 23,017 women without carcinoma of the cervix from 23 epidemiological studies. Int J Cancer. 2006; 118:1481–1495.
22. Vaccarella S, Herrero R, Snijders PJ, Dai M, Thomas JO, Hieu NT, et al. Smoking and human papillomavirus infection: pooled analysis of the International Agency for Research on Cancer HPV Prevalence Surveys. Int J Epidemiol. 2008; 37:536–546.
Article
23. Poppe WA, Ide PS, Drijkoningen MP, Lauweryns JM, Van Assche FA. Tobacco smoking impairs the local immunosurveillance in the uterine cervix. An immunohistochemical study. Gynecol Obstet Invest. 1995; 39:34–38.
24. Poppe WA, Peeters R, Drijkoningen M, Ide PS, Daenens P, Lauweryns JM, et al. Cervical cotinine and macrophage-Langerhans cell density in the normal human uterine cervix. Gynecol Obstet Invest. 1996; 41:253–259.
25. Barton SE, Maddox PH, Jenkins D, Edwards R, Cuzick J, Singer A. Effect of cigarette smoking on cervical epithelial immunity: a mechanism for neoplastic change? Lancet. 1988; 2:652–654.
Article
26. de Jong A, van Poelgeest MI, van der Hulst JM, Drijfhout JW, Fleuren GJ, Melief CJ, et al. Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res. 2004; 64:5449–5455.
Article
27. Evans EM, Man S, Evans AS, Borysiewicz LK. Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res. 1997; 57:2943–2950.
28. Herrero R, Brinton LA, Reeves WC, Brenes MM, Tenorio F, de Britton RC, et al. Invasive cervical cancer and smoking in Latin America. J Natl Cancer Inst. 1989; 81:205–211.
Article
29. Schlecht NF, Platt RW, Duarte-Franco E, Costa MC, Sobrinho JP, Prado JC, et al. Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst. 2003; 95:1336–1343.
Article
Full Text Links
  • OGS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr