J Vet Sci.  2017 Dec;18(4):541-545. 10.4142/jvs.2017.18.4.541.

Infections by pathogens with different transmission modes in feral cats from urban and rural areas of Korea

Affiliations
  • 1Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA30602, USA. hanglee@snu.ac.kr
  • 2Research institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea. jdchun@snu.ac.kr

Abstract

In this study, we examine prevalences of three infectious pathogens with different transmission modes (Bartonella henselae, hemoplasma, and Toxoplasma gondii) in feral cats from urban and rural habitats. Infection status of the three pathogens in blood samples (n = 117) was determined through molecular or serological diagnostic methods. Overall prevalence of hemoplasma, Toxoplasma gondii, and Bartonella henselae was 47.9%, 50%, and 35.7%, respectively. Comparing the two habitats, only seroprevalence of Bartonella henselae was significantly higher in urban cats. Based on the results, we discuss how pathogens with distinct transmission modes may show different prevalence between urban and rural habitat types.

Keyword

Bartonella henselae; Toxoplasma gondii; feral cat; habitat type; hemoplasma

MeSH Terms

Animals
Bartonella henselae
Cats*
Ecosystem
Korea*
Prevalence
Seroepidemiologic Studies
Toxoplasma

Figure

  • Fig. 1 Phylogenetic relationship of the partial 16S rRNA gene sequences of hemoplasmas isolated from this study and of related mycoplasmas from the GenBank database. Two sequences of “Candidatus Mycoplasma turicensis”, two sequences of “Mycoplasma haemofelis”, and a sequence of “Candidatus Mycoplasma haemominutum” from this study are included in the tree. The phylogenetic tree was constructed by using the neighbor-joining method. Bootstrap percentage values above 70% are provided at the nodes of the tree. GenBank accession Nos. are included in Fig. 1.


Reference

1. Breitschwerdt EB, Maggi RG, Chomel BB, Lappin MR. Bartonellosis: an emerging infectious disease of zoonotic importance to animals and human beings. J Vet Emerg Crit Care (San Antonio). 2010; 20:8–30.
Article
2. Costa AP, Silva AB, Costa FB, Xavier GS, Martins TF, Labruna MB, Guerra RMSNC. A survey of ectoparasites infesting urban and rural dogs of Maranhão state, Brazil. J Med Entomol. 2013; 50:674–678.
Article
3. Criado-Fornelio A, Martinez-Marcos A, Buling-Saraña A, Barba-Carretero JC. Presence of Mycoplasma haemofelis, Mycoplasma haemominutum and piroplasmids in cats from southern Europe: a molecular study. Vet Microbiol. 2003; 93:307–317.
Article
4. Denny E, Yakovlevich P, Eldridge MDB, Dickman C. Social and genetic analysis of a population of free-living cats (Felis catus L.) exploiting a resource-rich habitat. Wildl Res. 2002; 29:405–413.
Article
5. Du F, Feng HL, Nie H, Tu P, Zhang QL, Hu M, Zhou YQ, Zhao JL. Survey on the contamination of Toxoplasma gondii oocysts in the soil of public parks of Wuhan, China. Vet Parasitol. 2012; 184:141–146.
Article
6. Duarte A, Marques V, Correia JHD, Neto I, Bráz BS, Rodrigues C, Martins T, Rosado R, Ferreira JP, Santos-Reis M, Tavares L. Molecular detection of haemotropic Mycoplasma species in urban and rural cats from Portugal. J Feline Med Surg. 2015; 17:516–522.
Article
7. Gilot-Fromont E, Lélu M, Dardé ML, Richomme C, Aubert D, Afonso E, Mercier A, Gotteland C, Villena I. The life cycle of Toxoplasma gondii in the natural environment.In : Djaković OD, editor. Toxoplasmosis - Recent Advances. Chapt. 1. Rijeka: InTech;2012.
8. Hegglin D, Bontadina F, Contesse P, Gloor S, Deplazes P. Plasticity of predation behavior as a putative driving force for parasite life-cycle dynamics: the case of urban foxes and Echinococcus multilocularis tapeworm. Funct Ecol. 2007; 21:552–560.
Article
9. Kim YH, Baik JJ. Spatial and temporal structure of the urban heat Island in Seoul. J Appl Meteorol. 2005; 44:591–605.
Article
10. Krasnov BR, Stanko M, Miklisova D, Morand S. Habitat variation in species composition of flea assemblages on small mammals in central Europe. Ecol Res. 2006; 21:460–469.
Article
11. Krämer F, Mencke N. Flea epidemiology. Flea Biology and Control. The Biology of the Cat Flea Control and Prevention with Imidacloprid in Small Animals. Heidelberg: Springer;2001. p. 35–38.
12. Labruna MB, Horta MC, Aguiar DM, Cavalcante GT, Pinter A, Gennari SM, Camargo LMA. Prevalence of Rickettsia infection in dogs from the urban and rural areas of Monte Negro municipality, western Amazon, Brazil. Vector Borne Zoonotic Dis. 2007; 7:249–255.
Article
13. Page LK, Gehrt SD, Robinson NP. Land-use effects on prevalence of raccoon roundworm (Baylisascaris procyonis). J Wildl Dis. 2008; 44:594–599.
Article
14. Reisen WK. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol. 2010; 55:461–483.
Article
15. Sykes JE. Feline hemotropic mycoplasmas. Vet Clin North Am Small Anim Pract. 2010; 40:1157–1170.
Article
16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013; 30:2725–2729.
Article
17. Taroura S, Shimada Y, Sakata Y, Miyama T, Hiraoka H, Watanabe M, Itamoto K, Okuda M, Inokuma H. Detection of DNA of “Candidatus Mycoplasma haemominutum” and Spiroplasma sp. in unfed ticks collected from vegetation in Japan. J Vet Med Sci. 2005; 67:1277–1279.
Article
18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:4673–4680.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr