Asia Pac Allergy.  2011 Oct;1(3):157-167. 10.5415/apallergy.2011.1.3.157.

Overview on the pathomechanisms of allergic rhinitis

Affiliations
  • 1Nippon Medical School, Tokyo 113-8603, Japan. pawankar.ruby@gmail.com

Abstract

Allergic rhinitis a chronic inflammatory disease of the upper airways that has a major impact on the quality of life of patients and is a socio-economic burden. Understanding the underlying immune mechanisms is central to developing better and more targeted therapies. The inflammatory response in the nasal mucosa includes an immediate IgE-mediated mast cell response as well as a latephase response characterized by recruitment of eosinophils, basophils, and T cells expressing Th2 cytokines including interleukin (IL)-4, a switch factor for IgE synthesis, and IL-5, an eosinophil growth factor and on-going allergic inflammation. Recent advances have suggested new pathways like local synthesis of IgE, the IgE-IgE receptor mast cell cascade in on-going allergic inflammation and the epithelial expression of cytokines that regulate Th2 cytokine responses (i.e., thymic stromal lymphopoietin, IL-25, and IL-33). In this review, we briefly review the conventional pathways in the pathophysiology of allergic rhinitis and then elaborate on the recent advances in the pathophysiology of allergic rhinitis. An improved understanding of the immune mechanisms of allergic rhinitis can provide a better insight on novel therapeutic targets.

Keyword

Allergic rhinitis; Cytokines; Chemokines; Immune cells; Epithelial cells

MeSH Terms

Basophils
Chemokines
Cytokines
Eosinophils
Epithelial Cells
Humans
Immunoglobulin E
Inflammation
Interleukin-5
Interleukins
Mast Cells
Nasal Mucosa
Quality of Life
Rhinitis, Allergic*
T-Lymphocytes
Chemokines
Cytokines
Immunoglobulin E
Interleukin-5
Interleukins

Figure

  • Fig. 1 Chronic allergic respiratory syndrome. Adapted from Stokes JR, Casale T. Allergic rhinitis, asthma and Obstructive sleep apnea - the link. In: Pawankar R, Holgate ST, Rosenwasser LJ, editors. Allergy Frontiers. Vol. 3. 2009. p. 129-140.

  • Fig. 2 Ongoing inflammation in allergic rhintis. Adapted from Pawankar R et al. Curr Opin Allergy Clin Immunol 2002;2:1-5.


Cited by  4 articles

Current trends in upper airways and ocular allergic inflammation
Ashok Shah
Asia Pac Allergy. 2011;1(3):105-107.    doi: 10.5415/apallergy.2011.1.3.105.

Asia Pacific allergy: four years of experience
Yoon-Seok Chang
Asia Pac Allergy. 2015;5(1):1-2.    doi: 10.5415/apallergy.2015.5.1.1.

Asia Pacific Allergy: it's been five years!
Yoon-Seok Chang
Asia Pac Allergy. 2016;6(1):1-2.    doi: 10.5415/apallergy.2016.6.1.1.

Influence of the Genetic Background on Allergic Rhinitis Models in Mice
Roza Khalmuratova, Hyun-Woo Shin
Clin Exp Otorhinolaryngol. 2020;13(4):322-323.    doi: 10.21053/ceo.2020.00892.


Reference

1. Strachan D, Sibbald B, Weiland S, Aït-Khaled N, Anabwani G, Anderson HR, Asher MI, Beasley R, Björkstén B, Burr M, Clayton T, Crane J, Ellwood P, Keil U, Lai C, Mallol J, Martinez F, Mitchell E, Montefort S, Pearce N, Robertson C, Shah J, Stewart A, von Mutius E, Williams H. Worldwide variations in prevalence of symptoms of allergic rhinoconjunctivitis in children: the International Study of Asthma and Allergies in Childhood (ISAAC). Pediatr Allergy Immunol. 1997. 8:161–176.
Article
2. Simons FE. Learning impairment and allergic rhinitis. Allergy Asthma Proc. 1996. 17:185–189.
Article
3. Cockburn IM, Bailit HL, Berndt ER, Finkelstein SN. Loss of work productivity due to illness and medical treatment. J Occup Environ Med. 1999. 41:948–953.
Article
4. Bousquet J, Bullinger M, Fayol C, Marquis P, Valentin B, Burtin B. Assessment of quality of life in patients with perennial allergic rhinitis with the French version of the SF-36 Health Status Questionnaire. J Allergy Clin Immunol. 1994. 94:182–188.
Article
5. Malone DC, Lawson KA, Smith DH, Arrighi HM, Battista C. A cost of illness study of allergic rhinitis in the United States. J Allergy Clin Immunol. 1997. 99:22–27.
Article
6. Pawankar R, Bunnag C, Chen Y, Fukuda T, Kim YY, Le LT, Huong le TT, O'Hehir RE, Ohta K, Vichyanond P, Wang DY, Zhong N, Khaltaev N, Bousquet J. Allergic rhinitis and its impact on asthma update (ARIA 2008)--western and Asian-Pacific perspective. Asian Pac J Allergy Immunol. 2009. 27:237–243.
7. Naclerio RM. Allergic rhinitis. N Engl J Med. 1991. 325:860–869.
Article
8. Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001. 108:S147–S334.
Article
9. Young MC. Rhinitis, sinusitis, and polyposis. Allergy Asthma Proc. 1998. 19:211–218.
Article
10. North ML, Ellis AK. The role of epigenetics in the developmental origins of allergic disease. Ann Allergy Asthma Immunol. 2011. 106:355–361.
Article
11. Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, Bailey N, Potts EN, Whitehead G, Brass DM, Schwartz DA. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest. 2008. 118:3462–3469.
Article
12. Bradding P, Feather IH, Wilson S, Bardin PG, Heusser CH, Holgate ST, Howarth PH. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol. 1993. 151:3853–3865.
13. Pawankar RU, Okuda M, Hasegawa S, Suzuki K, Yssel H, Okubo K, Okumura K, Ra C. Interleukin-13 expression in the nasal mucosa of perennial allergic rhinitis. Am J Respir Crit Care Med. 1995. 152:2059–2067.
Article
14. Pawankar R, Ra C. Heterogeneity of mast cells and T cells in the nasal mucosa. J Allergy Clin Immunol. 1996. 98:S248–S262.
Article
15. Ozu C, Pawankar R, Takizawa R, Yamagishi S, Yagi T. Regulation of mast cell migration into the allergic nasal epithelium by RANTES and not SCF. J Allergy Clin Immunol. 2004. 113:S28.
16. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD. Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest. 1997. 99:1767–1773.
Article
17. Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR, Lo D. Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol. 1999. 162:2477–2487.
18. Sekiya T, Miyamasu M, Imanishi M, Yamada H, Nakajima T, Yamaguchi M, Fujisawa T, Pawankar R, Sano Y, Ohta K, Ishii A, Morita Y, Yamamoto K, Matsushima K, Yoshie O, Hirai K. Inducible expression of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J Immunol. 2000. 165:2205–2213.
Article
19. Pawankar R. Mast cells as orchestrators of the allergic reaction: the IgE-IgE receptor mast cell network. Curr Opin Allergy Clin Immunol. 2001. 1:3–6.
Article
20. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci U S A. 1986. 83:4464–4468.
Article
21. Enerbäck L, Pipkorn U, Olofsson A. Intraepithelial migration of mucosal mast cells in hay fever: ultrastructural observations. Int Arch Allergy Appl Immunol. 1986. 81:289–297.
Article
22. Nilsson G, Hjertson M, Andersson M, Greiff L, Svensson C, Nilsson K, Siegbahn A. Demonstration of mast-cell chemotactic activity in nasal lavage fluid: characterization of one chemotaxin as c-kit ligand, stem cell factor. Allergy. 1998. 53:874–879.
Article
23. Salib RJ, Kumar S, Wilson SJ, Howarth PH. Nasal mucosal immunoexpression of the mast cell chemoattractants TGF-beta, eotaxin, and stem cell factor and their receptors in allergic rhinitis. J Allergy Clin Immunol. 2004. 114:799–806.
24. Pawankar R, Yamagishi S, Takizawa R, Yagi T. Mast cell-IgE-and mast cell-structural cell interactions in allergic airway disease. Curr Drug Targets Inflamm Allergy. 2003. 2:303–312.
Article
25. Toru H, Pawankar R, Ra C, Yata J, Nakahata T. Human mast cells produce IL-13 by high-affinity IgE receptor cross-linking: enhanced IL-13 production by IL-4-primed human mast cells. J Allergy Clin Immunol. 1998. 102:491–502.
Article
26. Pawankar R, Okuda M, Yssel H, Okumura K, Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest. 1997. 99:1492–1499.
Article
27. Pawankar R, Ra C. IgE-Fc epsilonRI-mast cell axis in the allergic cycle. Clin Exp Allergy. 1998. 28:Suppl 3. 6–14.
28. Naclerio RM, Proud D, Togias AG, Adkinson NF Jr, Meyers DA, Kagey-Sobotka A, Plaut M, Norman PS, Lichtenstein LM. Inflammatory mediators in late antigen-induced rhinitis. N Engl J Med. 1985. 313:65–70.
Article
29. Silberstein DS. Eosinophil function in health and disease. Crit Rev Oncol Hematol. 1995. 19:47–77.
Article
30. Denburg JA. Bone marrow in atopy and asthma: hematopoietic mechanisms in allergic inflammation. Immunol Today. 1999. 20:111–113.
Article
31. Alam R, Stafford S, Forsythe P, Harrison R, Faubion D, Lett-Brown MA, Grant JA. RANTES is a chemotactic and activating factor for human eosinophils. J Immunol. 1993. 150:3442–3448.
32. Baggiolini M, Dahinden CA. CC chemokines in allergic inflammation. Immunol Today. 1994. 15:127–133.
Article
33. Garcia-Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med. 1996. 2:449–456.
Article
34. Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol. 1997. 158:3902–3908.
35. Simon HU. Eosinophil apoptosis in allergic diseases--an emerging new issue. Clin Exp Allergy. 1998. 28:1321–1324.
36. Plager DA, Stuart S, Gleich GJ. Human eosinophil granule major basic protein and its novel homolog. Allergy. 1998. 53:33–40.
Article
37. Venge P, Byström J, Carlson M, Hâkansson L, Karawacjzyk M, Peterson C, Sevéus L, Trulson A. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy. 1999. 29:1172–1186.
Article
38. Rosenberg HF. The eosinophil ribonucleases. Cell Mol Life Sci. 1998. 54:795–803.
Article
39. Egesten A, Weller PF, Olsson I. Arylsulfatase B is present in crystalloid-containing granules of human eosinophil granulocytes. Int Arch Allergy Immunol. 1994. 104:207–210.
Article
40. Broide DH, Paine MM, Firestein GS. Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest. 1992. 90:1414–1424.
Article
41. KleinJan A, Dijkstra MD, Boks SS, Severijnen LA, Mulder PG, Fokkens WJ. Increase in IL-8, IL-10, IL-13, and RANTES mRNA levels (in situ hybridization) in the nasal mucosa after nasal allergen provocation. J Allergy Clin Immunol. 1999. 103:441–450.
Article
42. Yang PC, Okuda M, Pawankar R, Aihara K. Electron microscopical studies of the cell population in nasal secretions. Rhinology. 1995. 33:70–77.
43. Wang D, Clement P, Smitz J, De Waele M, Derde MP. Correlations between complaints, inflammatory cells and mediator concentrations in nasal secretions after nasal allergen challenge and during natural allergen exposure. Int Arch Allergy Immunol. 1995. 106:278–285.
Article
44. Arzuaga Orozco J, Segura Méndez NH, Martínez Cairo-Cueto S. Evaluation of eosinophils in nasal mucus from patients with perennial allergic rhinitis during nasal provocation tests. Rev Alerg Mex. 1993. 40:139–141.
45. Pawankar R, Yamagishi S, Nonaka M, Koichi H, Ozu C, Watanabe S. Synergistic Induction of TARC in nasal epithelial cells and fibroblasts by IL-4 IL-13 and TNF-alpha and its correlation to CCR4+T cells in patients with allergic rhinitis. J Allergy Clin Immunol. 2003. 111:S148.
46. Varney VA, Jacobson MR, Sudderick RM, Robinson DS, Irani AM, Schwartz LB, Mackay IS, Kay AB, Durham SR. Immunohistology of the nasal mucosa following allergen-induced rhinitis. Identification of activated T lymphocytes, eosinophils, and neutrophils. Am Rev Respir Dis. 1992. 146:170–176.
Article
47. Pawankar RU, Okuda M, Okubo K, Ra C. Lymphocyte subsets of the nasal mucosa in perennial allergic rhinitis. Am J Respir Crit Care Med. 1995. 152:2049–2058.
Article
48. Durham SR, Ying S, Varney VA, Jacobson MR, Sudderick RM, Mackay IS, Kay AB, Hamid QA. Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colony-stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol. 1992. 148:2390–2394.
49. Ying S, Durham SR, Barkans J, Masuyama K, Jacobson M, Rak S, Löwhagen O, Moqbel R, Kay AB, Hamid QA. T cells are the principal source of interleukin-5 mRNA in allergen-induced rhinitis. Am J Respir Cell Mol Biol. 1993. 9:356–360.
Article
50. Varga EM, Jacobson MR, Till SJ, Masuyama K, O'Brien F, Rak S, Lund V, Scadding GK, Hamid QA, Durham SR. Cellular infiltration and cytokine mRNA expression in perennial allergic rhinitis. Allergy. 1999. 54:338–345.
Article
51. Pawankar RU, Okuda M, Suzuki K, Okumura K, Ra C. Phenotypic and molecular characteristics of nasal mucosal gamma delta T cells in allergic and infectious rhinitis. Am J Respir Crit Care Med. 1996. 153:1655–1665.
Article
52. Zuany-Amorim C, Ruffié C, Hailé S, Vargaftig BB, Pereira P, Pretolani M. Requirement for gammadelta T cells in allergic airway inflammation. Science. 1998. 280:1265–1267.
53. Mészáros G, Szalay B, Toldi G, Mezei G, Tamási L, Vásárhelyi B, Cserhéti E, Treszl A. FoxP3+ regulatory T cells in childhood allergic rhinitis and asthma. J Investig Allergol Clin Immunol. 2009. 19:238–240.
54. Provoost S, Maes T, van Durme YM, Gevaert P, Bachert C, Schmidt-Weber CB, Brusselle GG, Joos GF, Tournoy KG. Decreased FOXP3 protein expression in patients with asthma. Allergy. 2009. 64:1539–1546.
Article
55. Juliusson S, Bachert C, Klementsson H, Karlsson G, Pipkorn U. Macrophages on the nasal mucosal surface in provoked and naturally occurring allergic rhinitis. Acta Otolaryngol. 1991. 111:946–953.
Article
56. Fokkens WJ, Broekhuis-Fluitsma DM, Rijntjes E, Vroom TM, Hoefsmit EC. Langerhans cells in nasal mucosa of patients with grass pollen allergy. Immunobiology. 1991. 182:135–142.
Article
57. Godthelp T, Fokkens WJ, Kleinjan A, Holm AF, Mulder PG, Prens EP, Rijntes E. Antigen presenting cells in the nasal mucosa of patients with allergic rhinitis during allergen provocation. Clin Exp Allergy. 1996. 26:677–688.
Article
58. Fokkens WJ, Vroom TM, Rijntjes E, Mulder PG. CD-1 (T6), HLA-DR-expressing cells, presumably Langerhans cells, in nasal mucosa. Allergy. 1989. 44:167–172.
Article
59. Shoji S, Ertl RF, Linder J, Koizumi S, Duckworth WC, Rennard SI. Bronchial epithelial cells respond to insulin and insulin-like growth factor-I as a chemoattractant. Am J Respir Cell Mol Biol. 1990. 2:553–557.
Article
60. Campbell AM, Chanez P, Vignola AM, Bousquet J, Couret I, Michel FB, Godard P. Functional characteristics of bronchial epithelium obtained by brushing from asthmatic and normal subjects. Am Rev Respir Dis. 1993. 147:529–534.
Article
61. Terada N, Maesako K, Hamano N, Houki G, Ikeda T, Sai M, Yamashita T, Fukuda S, Wakita A, Yoshimura K, Konno A. Eosinophil adhesion regulates RANTES production in nasal epithelial cells. J Immunol. 1997. 158:5464–5470.
62. Lee BJ, Naclerio RM, Bochner BS, Taylor RM, Lim MC, Baroody FM. Nasal challenge with allergen upregulates the local expression of vascular endothelial adhesion molecules. J Allergy Clin Immunol. 1994. 94:1006–1016.
Article
63. Pawankar R, Watanabe S, Nonaka M, Ozu C, Aida M, Yagi T. Differential expression of metalloproteinase 2 and 9 in the allergic nasal mucosa and nasal polyps. J Allergy Clin Immunol. 2004. 113:S332.
64. Takizawa R, Pawankar R, Yamagishi S, Takenaka H, Yagi T. Increased expression of HLA-DR and CD86 in nasal epithelial cells in allergic rhinitics: antigen presentation to T cells and up-regulation by diesel exhaust particles. Clin Exp Allergy. 2007. 37:420–433.
Article
65. Yamagishi S, Pawankar R, Takizawa R, Nonaka M, Yagi T. Nasal epithelial cells express the FcεRI: IL-4 induced upregulation of the FcεRI and IL-6 production. J Allergy Clin Immunol. 2003. 111:S347.
Article
66. Roche N, Chinet TC, Huchon GJ. Allergic and nonallergic interactions between house dust mite allergens and airway mucosa. Eur Respir J. 1997. 10:719–726.
67. Thompson PJ. Unique role of allergens and the epithelium in asthma. Clin Exp Allergy. 1998. 28:Suppl 5. 110–116.
Article
68. King C, Brennan S, Thompson PJ, Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol. 1998. 161:3645–3651.
69. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest. 1999. 104:123–133.
Article
70. Devalia JL, Bayram H, Abdelaziz MM, Sapsford RJ, Davies RJ. Differences between cytokine release from bronchial epithelial cells of asthmatic patients and non-asthmatic subjects: effect of exposure to diesel exhaust particles. Int Arch Allergy Immunol. 1999. 118:437–439.
Article
71. Liu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med. 2006. 203:269–273.
Article
72. Rochman Y, Leonard WJ. Thymic stromal lymphopoietin: a new cytokine in asthma. Curr Opin Pharmacol. 2008. 8:249–254.
Article
73. Miyata M, Hatsushika K, Ando T, Shimokawa N, Ohnuma Y, Katoh R, Suto H, Ogawa H, Masuyama K, Nakao A. Mast cell regulation of epithelial TSLP expression plays an important role in the development of allergic rhinitis. Eur J Immunol. 2008. 38:1487–1492.
Article
74. Kimura S, Pawankar R, Mori S, Nonaka M, Masuno S, Yagi T, Okubo K. Increased expression and role of thymic stromal lymphopoietin in nasal polyposis. Allergy Asthma Immunol Res. 2011. 3:186–193.
Article
75. Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, Yao Z, Ying S, Huston DP, Liu YJ. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007. 204:1837–1847.
Article
76. Préfontaine D, Lajoie-Kadoch S, Foley S, Audusseau S, Olivenstein R, Halayko AJ, Lemière C, Martin JG, Hamid Q. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol. 2009. 183:5094–5103.
Article
77. Karlsson MG, Hellquist HB. Endothelial adhesion molecules for nasal-homing T cells in allergy. Virchows Arch. 1996. 429:49–54.
Article
78. Terada N, Maesako K, Hamano N, Ikeda T, Sai M, Yamashita T, Fukuda S, Konno A. RANTES production in nasal epithelial cells and endothelial cells. J Allergy Clin Immunol. 1996. 98:S230–S237.
Article
79. Jeannin P, Delneste Y, Gosset P, Molet S, Lassalle P, Hamid Q, Tsicopoulos A, Tonnel AB. Histamine induces interleukin-8 secretion by endothelial cells. Blood. 1994. 84:2229–2233.
Article
80. Delneste Y, Lassalle P, Jeannin P, Joseph M, Tonnel AB, Gosset P. Histamine induces IL-6 production by human endothelial cells. Clin Exp Immunol. 1994. 98:344–349.
Article
81. Malaviya R, Twesten NJ, Ross EA, Abraham SN, Pfeifer JD. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J Immunol. 1996. 156:1490–1496.
82. Cameron L, Hamid Q, Wright E, Nakamura Y, Christodoulopoulos P, Muro S, Frenkiel S, Lavigne F, Durham S, Gould H. Local synthesis of epsilon germline gene transcripts, IL-4, and IL-13 in allergic nasal mucosa after ex vivo allergen exposure. J Allergy Clin Immunol. 2000. 106:46–52.
83. Pawankar R, Yamagishi S, Yagi T. Revisiting the roles of mast cells in allergic rhinitis and its relation to local IgE synthesis. Am J Rhinol. 2000. 14:309–317.
Article
84. Powe DG, Jagger C, Kleinjan A, Carney AS, Jenkins D, Jones NS. 'Entopy': localized mucosal allergic disease in the absence of systemic responses for atopy. Clin Exp Allergy. 2003. 33:1374–1379.
Article
85. Nilsson G, Forsberg-Nilsson K, Xiang Z, Hallböök F, Nilsson K, Metcalfe DD. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol. 1997. 27:2295–2301.
Article
86. Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A. 1994. 91:3739–3743.
Article
87. Bienenstock J, Tomioka M, Matsuda H, Stead RH, Quinonez G, Simon GT, Coughlin MD, Denburg JA. The role of mast cells in inflammatory processes: evidence for nerve/mast cell interactions. Int Arch Allergy Appl Immunol. 1987. 82:238–243.
Article
88. Virchow JC, Julius P, Lommatzsch M, Luttmann W, Renz H, Braun A. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Med. 1998. 158:2002–2005.
Article
89. Ciprandi G, Ricca V, Tosca MA, Landi M, Passalacqua G, Canonica GW. Continuous antihistamine treatment controls allergic inflammation and reduces respiratory morbidity in children with mite allergy. Allergy. 1999. 54:358–365.
Article
90. Braunstahl GJ, Overbeek SE, Kleinjan A, Prins JB, Hoogsteden HC, Fokkens WJ. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol. 2001. 107:469–476.
Article
91. Corren J, Adinoff AD, Irvin CG. Changes in bronchial responsiveness following nasal provocation with allergen. J Allergy Clin Immunol. 1992. 89:611–618.
Article
92. Crystal-Peters J, Neslusan C, Crown WH, Torres A. Treating allergic rhinitis in patients with comorbid asthma: the risk of asthma-related hospitalizations and emergency department visits. J Allergy Clin Immunol. 2002. 109:57–62.
Article
93. Valovirta E, Pawankar R. Survey on the impact of comorbid allergic rhinitis in patients with asthma. BMC Pulm Med. 2006. 6:Suppl 1. S3.
Article
Full Text Links
  • APA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr