J Clin Neurol.  2017 Oct;13(4):317-324. 10.3988/jcn.2017.13.4.317.

Apraxia: Review and Update

Affiliations
  • 1Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea. noizegun@gmail.com

Abstract

Praxis, the ability to perform skilled or learned movements is essential for daily living. Inability to perform such praxis movements is defined as apraxia. Apraxia can be further classified into subtypes such as ideomotor, ideational and limb-kinetic apraxia. Relevant brain regions have been found to include the motor, premotor, temporal and parietal cortices. Apraxia is found in a variety of highly prevalent neurological disorders including dementia, stroke and Parkinsonism. Furthermore, apraxia has been shown to negatively affect quality of life. Therefore, recognition and treatment of this disorder is critical. This article provides an overview of apraxia and highlights studies dealing with the neurophysiology of this disorder, opening up novel perspectives for the use of motor training and noninvasive brain stimulation as treatment.

Keyword

apraxia; ideomotor; ideational; limb-kinetic; neurophysiology; Parkinsonism; dementia; stroke

MeSH Terms

Apraxias*
Brain
Dementia
Nervous System Diseases
Neurophysiology
Parietal Lobe
Parkinsonian Disorders
Quality of Life
Stroke

Figure

  • Fig. 1 Reproduction of Liepmann's schema of the motor engram. Adapted from Roby-Brami et al. Philos Trans R Soc Lond B Biol Sci 2012;367:144-160, with permission of Royal Society Publishing.2 1: limb-kinetic apraxia, 2: ideomotor apraxia, 3: ideational apraxia, Co.: precentral gyrus, Cp: postcentral gyrus, F. inf.: frontal lobe, inferior, F. med.: frontal lobe, middle, F. sup.: frontal lobe, superior, G.sm.: supramarginal gyrus, O.m.: occipital lobe, medial, O.s.: occipital lobe, superior.

  • Fig. 2 Spatial plots for simple movement (A) and tool use movement (B). The beginning of the Bereitschaftspotentials (BPs), or movement-related cortical potentials, are seen to occur in bilateral sensorimotor areas in simple movement, while it is seen to begin in the left parietal area in tool pantomime. Adapted from Wheaton et al. Clinical Neurophysiology 2005;116:1382-1390, with permission of Springer.49

  • Fig. 3 Study design of tDCS in patients with corticobasal syndrome. The study was conducted in a randomized, double-blind fashion. All patients were randomly subjected to three types of stimulation over two sessions. A: tDCS of the left parietal cortex, right parietal cortex and placebo tDCS. B: The De Renzi ideomotor apraxia test was conducted to assess limb apraxia prior to and following each stimulation session. Adapted from Bianchi et al. European Journal of Neurology 2015;22: 1317-1322, with permission of Wiley.71 tDCS: transcranial direct current stimulation, PARC: parietal cortex.


Reference

1. Gross RG, Grossman M. Update on apraxia. Curr Neurol Neurosci Rep. 2008; 8:490–496.
Article
2. Roby-Brami A, Hermsdörfer J, Roy AC, Jacobs S. A neuropsychological perspective on the link between language and praxis in modern humans. Philos Trans R Soc Lond B Biol Sci. 2012; 367:144–160.
Article
3. Geschwind N. Disconnexion syndromes in animals and man. II. Brain. 1965; 88:585–644.
4. Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965; 88:237–294.
5. Heilman KM, Rothi LJ, Valenstein E. Two forms of ideomotor apraxia. Neurology. 1982; 32:342–346.
Article
6. Buxbaum LJ, Kyle K, Grossman M, Coslett HB. Left inferior parietal representations for skilled hand-object interactions: evidence from stroke and corticobasal degeneration. Cortex. 2007; 43:411–423.
Article
7. Buxbaum LJ. Ideomotor apraxia: a call to action. Neurocase. 2001; 7:445–458.
Article
8. Heilman KM. Apraxia. Continuum (Minneap Minn). 2010; 16:86–98.
Article
9. Foki T, Vanbellingen T, Lungu C, Pirker W, Bohlhalter S, Nyffeler T, et al. Limb-kinetic apraxia affects activities of daily living in Parkinson's disease: a multi-center study. Eur J Neurol. 2016; 23:1301–1307.
Article
10. Mendoza JE, Apostolos GT, Humphreys JD, Hanna-Pladdy B, O'Bryant SE. Coin rotation task (CRT): a new test of motor dexterity. Arch Clin Neuropsychol. 2009; 24:287–292.
Article
11. Gálvez-Jiménez N, Tuite PJ. Uncommon causes of movement disorders. Cambridge: Cambridge University Press;2011.
12. Tyrrell PJ. Apraxia of gait or higher level gait disorders: review and description of two cases of progressive gait disturbance due to frontal lobe degeneration. J R Soc Med. 1994; 87:454–456.
13. Zadikoff C, Lang AE. Apraxia in movement disorders. Brain. 2005; 128:1480–1497.
Article
14. Donkervoort M, Dekker J, van den Ende F, Stehmann-Saris JC, Deelman BG. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes. Clin Rehabil. 2000; 14:130–136.
Article
15. Wheaton LA, Hallett M. Ideomotor apraxia: a review. J Neurol Sci. 2007; 260:1–10.
Article
16. Hanna-Pladdy B, Daniels SK, Fieselman MA, Thompson K, Vasterling JJ, Heilman KM, et al. Praxis lateralization: errors in right and left hemisphere stroke. Cortex. 2001; 37:219–230.
Article
17. Burrell JR, Hornberger M, Vucic S, Kiernan MC, Hodges JR. Apraxia and motor dysfunction in corticobasal syndrome. PLoS One. 2014; 9:e92944.
Article
18. Goldenberg G. Apraxia. Wiley Interdiscip Rev Cogn Sci. 2013; 4:453–462.
Article
19. De Renzi E, Motti F, Nichelli P. Imitating gestures. A quantitative approach to ideomotor apraxia. Arch Neurol. 1980; 37:6–10.
20. Vanbellingen T, Kersten B, Van Hemelrijk B, Van de Winckel A, Bertschi M, Müri R, et al. Comprehensive assessment of gesture production: a new test of upper limb apraxia (TULIA). Eur J Neurol. 2010; 17:59–66.
Article
21. Roy EA, Square-Storer P, Hogg S, Adams S. Analysis of task demands in apraxia. Int J Neurosci. 1991; 56:177–186.
Article
22. Foundas AL, Macauley BL, Raymer AM, Maher LM, Rothi LJ, Heilman KM. Ideomotor apraxia in Alzheimer disease and left hemisphere stroke: limb transitive and intransitive movements. Neuropsychiatry Neuropsychol Behav Neurol. 1999; 12:161–166.
23. Buxbaum LJ, Johnson-Frey SH, Bartlett-Williams M. Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia. 2005; 43:917–929.
Article
24. Buxbaum LJ, Shapiro AD, Coslett HB. Critical brain regions for toolrelated and imitative actions: a componential analysis. Brain. 2014; 137:1971–1985.
Article
25. Baumard J, Lesourd M, Jarry C, Merck C, Etcharry-Bouyx F, Chauviré V, et al. Tool use disorders in neurodegenerative diseases: roles of semantic memory and technical reasoning. Cortex. 2016; 82:119–132.
Article
26. Jarry C, Osiurak F, Besnard J, Baumard J, Lesourd M, Croisile B, et al. Tool use in left brain damage and Alzheimer's disease: what about function and manipulation knowledge? J Neuropsychol. 2016; 10:154–159.
Article
27. Lesourd M, Le Gall D, Baumard J, Croisile B, Jarry C, Osiurak F. Apraxia and Alzheimer's disease: review and perspectives. Neuropsychol Rev. 2013; 23:234–256.
Article
28. Ochipa C, Rothi LJ, Heilman KM. Conceptual apraxia in Alzheimer's disease. Brain. 1992; 115:1061–1071.
Article
29. Tranel D, Kemmerer D, Adolphs R, Damasio H, Damasio AR. Neural correlates of conceptual knowledge for actions. Cogn Neuropsychol. 2003; 20:409–432.
Article
30. Choi SH, Na DL, Kang E, Lee KM, Lee SW, Na DG. Functional magnetic resonance imaging during pantomiming tool-use gestures. Exp Brain Res. 2001; 139:311–317.
Article
31. Beauchamp MS, Lee KE, Haxby JV, Martin A. Parallel visual motion processing streams for manipulable objects and human movements. Neuron. 2002; 34:149–159.
Article
32. Chao LL, Haxby JV, Martin A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci. 1999; 2:913–919.
Article
33. Frey SH. What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex. 2007; 43:368–375.
Article
34. Ebisch SJ, Babiloni C, Del Gratta C, Ferretti A, Perrucci MG, Caulo M, et al. Human neural systems for conceptual knowledge of proper object use: a functional magnetic resonance imaging study. Cereb Cortex. 2007; 17:2744–2751.
Article
35. Canessa N, Borgo F, Cappa SF, Perani D, Falini A, Buccino G, et al. The different neural correlates of action and functional knowledge in semantic memory: an FMRI study. Cereb Cortex. 2008; 18:740–751.
Article
36. Vingerhoets G, Acke F, Vandemaele P, Achten E. Tool responsive regions in the posterior parietal cortex: effect of differences in motor goal and target object during imagined transitive movements. Neuroimage. 2009; 47:1832–1843.
Article
37. Watson CE, Buxbaum LJ. A distributed network critical for selecting among tool-directed actions. Cortex. 2015; 65:65–82.
Article
38. Ogawa K, Imai F. Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex. Exp Brain Res. 2016; 234:3677–3687.
Article
39. Assmus A, Marshall JC, Ritzl A, Noth J, Zilles K, Fink GR. Left inferior parietal cortex integrates time and space during collision judgments. Neuroimage. 2003; 20:Suppl 1. S82–S88.
Article
40. Bohlhalter S, Hattori N, Wheaton L, Fridman E, Shamim EA, Garraux G, et al. Gesture subtype-dependent left lateralization of praxis planning: an event-related fMRI study. Cereb Cortex. 2009; 19:1256–1262.
Article
41. Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, et al. The role of the dorsal stream for gesture production. Neuroimage. 2006; 29:417–428.
Article
42. Ramayya AG, Glasser MF, Rilling JK. A DTI investigation of neural substrates supporting tool use. Cereb Cortex. 2010; 20:507–516.
Article
43. Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, et al. Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage. 2011; 58:362–380.
Article
44. Wheaton LA, Yakota S, Hallett M. Posterior parietal negativity preceding self-paced praxis movements. Exp Brain Res. 2005; 163:535–539.
Article
45. Wheaton LA, Shibasaki H, Hallett M. Temporal activation pattern of parietal and premotor areas related to praxis movements. Clin Neurophysiol. 2005; 116:1201–1212.
Article
46. Freund HJ, Hummelsheim H. Lesions of premotor cortex in man. Brain. 1985; 108:697–733.
Article
47. Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E. Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci. 2006; 26:2260–2268.
Article
48. Davare M, Lemon R, Olivier E. Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J Physiol. 2008; 586:2735–2742.
Article
49. Wheaton LA, Nolte G, Bohlhalter S, Fridman E, Hallett M. Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements. Clin Neurophysiol. 2005; 116:1382–1390.
Article
50. Pobric G, Jefferies E, Lambon Ralph MA. Category-specific versus category-general semantic impairment induced by transcranial magnetic stimulation. Curr Biol. 2010; 20:964–968.
Article
51. Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007; 8:976–987.
Article
52. Lambon Ralph MA, Sage K, Jones RW, Mayberry EJ. Coherent concepts are computed in the anterior temporal lobes. Proc Natl Acad Sci U S A. 2010; 107:2717–2722.
Article
53. Adlam AL, Bozeat S, Arnold R, Watson P, Hodges JR. Semantic knowledge in mild cognitive impairment and mild Alzheimer's disease. Cortex. 2006; 42:675–684.
Article
54. Bozeat S, Lambon Ralph MA, Patterson K, Garrard P, Hodges JR. Non-verbal semantic impairment in semantic dementia. Neuropsychologia. 2000; 38:1207–1215.
Article
55. Soliveri , Piacentini S, Girotti F. Limb apraxia in corticobasal degeneration and progressive supranuclear palsy. Neurology. 2005; 64:448–453.
Article
56. Soliveri P, Piacentini S, Paridi D, Testa D, Carella F, Girotti F. Distalproximal differences in limb apraxia in corticobasal degeneration but not progressive supranuclear palsy. Neurol Sci. 2003; 24:213–214.
Article
57. Foki T, Pirker W, Geißler A, Haubenberger D, Hilbert M, Hoellinger I, et al. Finger dexterity deficits in Parkinson's disease and somatosensory cortical dysfunction. Parkinsonism Relat Disord. 2015; 21:259–265.
Article
58. Matt E, Foki T, Fischmeister F, Pirker W, Haubenberger D, Rath J, et al. Early dysfunctions of fronto-parietal praxis networks in Parkinson's disease. Brain Imaging Behav. 2017; 11:512–525.
Article
59. Denes G, Mantovan MC, Gallana A, Cappelletti JY. Limb-kinetic apraxia. Mov Disord. 1998; 13:468–476.
Article
60. Smania N, Aglioti SM, Girardi F, Tinazzi M, Fiaschi A, Cosentino A, et al. Rehabilitation of limb apraxia improves daily life activities in patients with stroke. Neurology. 2006; 67:2050–2052.
Article
61. Smania N, Girardi F, Domenicali C, Lora E, Aglioti S. The rehabilitation of limb apraxia: a study in left-brain-damaged patients. Arch Phys Med Rehabil. 2000; 81:379–388.
Article
62. Daumüller M, Goldenberg G. Therapy to improve gestural expression in aphasia: a controlled clinical trial. Clin Rehabil. 2010; 24:55–65.
Article
63. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014; 125:2150–2206.
Article
64. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017; 128:56–92.
Article
65. Wischnewski M, Schutter DJ. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 2015; 8:685–692.
Article
66. Wischnewski M, Schutter DJ. Efficacy and time course of paired associative stimulation in cortical plasticity: implications for neuropsychiatry. Clin Neurophysiol. 2016; 127:732–739.
Article
67. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007; 55:187–199.
Article
68. Nguyen JP, Suarez A, Kemoun G, Meignier M, Le Saout E, Damier P, et al. Repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease. Neurophysiol Clin. 2017; 47:47–53.
Article
69. Zhao J, Li Z, Cong Y, Zhang J, Tan M, Zhang H, et al. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget. 2017; 8:33864–33871.
Article
70. Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Alzheimer's disease with repetitive transcranial magnetic stimulation combined with cognitive training: a prospective, randomized, double-blind, placebo-controlled study. J Clin Neurol. 2016; 12:57–64.
Article
71. Bianchi M, Cosseddu M, Cotelli M, Manenti R, Brambilla M, Rizzetti MC, et al. Left parietal cortex transcranial direct current stimulation enhances gesture processing in corticobasal syndrome. Eur J Neurol. 2015; 22:1317–1322.
Article
72. Bolognini N, Convento S, Banco E, Mattioli F, Tesio L, Vallar G, et al. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex. Brain. 2015; 138:428–439.
Article
73. Bieńkiewicz MM, Brandi ML, Goldenberg G, Hughes CM, Hermsdörfer J. The tool in the brain: apraxia in ADL. Behavioral and neurological correlates of apraxia in daily living. Front Psychol. 2014; 5:353.
74. Hanna-Pladdy B, Heilman KM, Foundas AL. Ecological implications of ideomotor apraxia: evidence from physical activities of daily living. Neurology. 2003; 60:487–490.
Full Text Links
  • JCN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr