Ultrasonography.  2016 Jan;35(1):39-46. 10.14366/usg.15022.

Impact of variations in fatty liver on sonographic detection of focal hepatic lesions originally identified by CT

Affiliations
  • 1Department of Ultrasound, Affiliated Hospital of Hainan Medical College, Haikou, China. wsz074@aliyun.com
  • 2Department of Radiology, Affiliated Hospital of Hainan Medical College, Haikou, China.

Abstract

PURPOSE
The aim of this study was to investigate the influence of variations in fatty liver on the ultrasonographic detection of focal liver lesions.
METHODS
A total of 229 patients with varying degrees of fatty liver and focal liver lesions and 200 patients with focal liver lesions but no fatty liver were randomly selected for inclusion in groups I and II, respectively. Findings of focal liver lesions identified on computed tomography were taken as the reference, and findings on ultrasonography were compared with them.
RESULTS
The number of focal liver lesions in groups I and II were 501 and 413, respectively. The ultrasonographic detection rates of focal liver lesions in groups I and II were 86.8% (435/501) and 94.2% (389/413), respectively. Comparison of the detection of the focal lesions between patients with and without fatty liver or different grades of fatty liver were as follows: mild fatty liver (162/177) vs. liver without fat infiltration (389/413) (P=0.277); mild fatty liver (162/177) vs. moderate fatty liver (190/212) (P=0.604); mild fatty liver (162/177) vs. severe fatty liver (83/112) (P<0.001); moderate fatty liver (190/212) vs. liver without fat infiltration (389/413) (P=0.051); moderate fatty liver (190/212) vs. severe fatty liver (83/112) (P<0.001); severe fatty liver (83/112) vs. liver without fat infiltration (389/413) (P<0.001); and fatty liver (435/501) vs. liver without fat infiltration (389/413) (P<0.001).
CONCLUSION
Mild and moderate fatty liver are not significantly associated with the visualization of the lesion, while severe fatty liver usually impairs the detection of focal lesions in the liver. If a patient with severe fatty liver is suspected to have a liver tumor, ultrasonography should only be chosen cautiously in case of a missed diagnosis.

Keyword

Fatty liver; Liver neoplasms; Ultrasonography

MeSH Terms

Diagnosis
Fatty Liver*
Humans
Liver
Liver Neoplasms
Ultrasonography*

Reference

References

1. Teefey SA, Hildeboldt CC, Dehdashti F, Siegel BA, Peters MG, Heiken JP, et al. Detection of primary hepatic malignancy in liver transplant candidates: prospective comparison of CT, MR imaging, US, and PET. Radiology. 2003; 226:533–542.
Article
2. Liu WC, Lim JH, Park CK, Kim MJ, Kim SH, Lee SJ, et al. Poor sensitivity of sonography in detection of hepatocellular carcinoma in advanced liver cirrhosis: accuracy of pretransplantation sonography in 118 patients. Eur Radiol. 2003; 13:1693–1698.
Article
3. van Vledder MG, Torbenson MS, Pawlik TM, Boctor EM, Hamper UM, Olino K, et al. The effect of steatosis on echogenicity of colorectal liver metastases on intraoperative ultrasonography. Arch Surg. 2010; 145:661–667.
Article
4. Konno K, Ishida H, Sato M, Komatsuda T, Ishida J, Naganuma H, et al. Liver tumors in fatty liver: difficulty in ultrasonographic interpretation. Abdom Imaging. 2001; 26:487–491.
Article
5. Bennett GL, Krinsky GA, Abitbol RJ, Kim SY, Theise ND, Teperman LW. Sonographic detection of hepatocellular carcinoma and dysplastic nodules in cirrhosis: correlation of pretransplantation sonography and liver explant pathology in 200 patients. AJR Am J Roentgenol. 2002; 179:75–80.
Article
6. Quaia E, D'Onofrio M, Palumbo A, Rossi S, Bruni S, Cova M. Comparison of contrast-enhanced ultrasonography versus baseline ultrasound and contrast-enhanced computed tomography in metastatic disease of the liver: diagnostic performance and confidence. Eur Radiol. 2006; 16:1599–1609.
Article
7. Marsh JI, Gibney RG, Li DK. Hepatic hemangioma in the presence of fatty infiltration: an atypical sonographic appearance. Gastrointest Radiol. 1989; 14:262–264.
Article
8. Vilgrain V, Ronot M, Abdel-Rehim M, Zappa M, d'Assignies G, Bruno O, et al. Hepatic steatosis: a major trap in liver imaging. Diagn Interv Imaging. 2013; 94:713–727.
Article
9. Wong VW, Chu WC, Wong GL, Chan RS, Chim AM, Ong A, et al. Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: a population study using protonmagnetic resonance spectroscopy and transient elastography. Gut. 2012; 61:409–415.
Article
10. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011; 140:124–131.
Article
11. Zeng MD, Fan JG, Lu LG, Li YM, Chen CW, Wang BY, et al. Guidelines for the diagnosis and treatment of nonalcoholic fatty liver diseases. J Dig Dis. 2008; 9:108–112.
Article
12. Soyer P, Sirol M, Fargeaudou Y, Duchat F, Hamzi L, Boudiaf M, et al. Differentiation between true focal liver lesions and pseudolesions in patients with fatty liver: evaluation of helical CT criteria. Eur Radiol. 2010; 20:1726–1737.
Article
Full Text Links
  • USG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr