Ann Lab Med.  2017 Jul;37(4):305-312. 10.3343/alm.2017.37.4.305.

Evaluation of Six Phenotypic Methods for the Detection of Carbapenemases in Gram-Negative Bacteria With Characterized Resistance Mechanisms

Affiliations
  • 1Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. 1309898173@qq.com

Abstract

BACKGROUND
We compared the performance of the modified Hodge test (MHT), Triton Hodge test (THT), Carba NP test (CNPt), simplified Carba NP test (CNPt-direct), blue-Carba NP test (BCT), and carbapenem inactivation method (CIM) for rapid and accurate carbapenemase detection.
METHODS
The methods were evaluated by using 256 gram-negative isolates, including 197 Enterobacteriaceae (79 Enterobacter spp., 74 Klebsiella spp., 33 Escherichia coli, 10 Citrobacter spp., and 1 Serratia marcescens), 51 Acinetobacter baumannii, and 8 Pseudomonas aeruginosa strains. The collection included 117 non-carbapenemase, 18 Klebsiella pneumoniae carbapenemases (KPC) producers, 46 New Delhi metallo-β-lactamases (NDM) producers, 11 imipenemases (IMP) producers, and 51 oxacillinases (OXA) producers, and 13 strains harboring two different carbapenemase genes.
RESULTS
The specificity of the THT (91.5%) was significantly lower than other methods, each of which had 100% specificity (P<0.003). This can be attributed to the false detection of Ampler class C β-lactamases (AmpC) carriers. The CNPt-direct and CIM yielded the highest sensitivities (P<0.003), which were comparable (92.8% vs 93.5%, P>0.999). Because of improved detection of NDM carriers, THT showed significantly higher sensitivity than the MHT (84.9% vs 75.5%, P<0.001). However, poor performances in detecting OXA still influenced the sensitivities of the CNPt (66.2%) and BCT (82.0%), as well as the MHT and THT.
CONCLUSIONS
CNPt-direct and CIM demonstrated the best performance for the efficient detection of carbapenemase among the six evaluated methods. Except the MHT and THT, the detection of carbapenemase-producing Enterobacteriaceae by all the other methods was acceptable, when the OXA-type carbapenemase was not prevalent.

Keyword

Evaluation; Phenotypic methods; Carbapenemase; Gram-negative bacteria

MeSH Terms

Acinetobacter baumannii
Citrobacter
Enterobacter
Enterobacteriaceae
Escherichia coli
Gram-Negative Bacteria*
Klebsiella
Klebsiella pneumoniae
Methods*
Neptune
Pseudomonas aeruginosa
Sensitivity and Specificity
Serratia

Reference

1. Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol. 2011; 65:455–478. PMID: 21740228.
2. Nordmann P, Dortet L, Poirel L. Rapid detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2012; 50:3016–3022. PMID: 22760052.
3. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013; 303:298–304. PMID: 23499304.
4. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-fifth Informational supplement M100-S25. Wayne, PA: CLSI;2015.
5. Pasteran F, Gonzalez LJ, Albornoz E, Bahr G, Vila AJ, Corso A. Triton Hodge test: improved protocol for modified Hodge test for enhanced detection of NDM and other carbapenemase producers. J Clin Microbiol. 2016; 54:640–649. PMID: 26719442.
6. Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. Evaluation of the RAPIDEC® CARBA NP, the Rapid CARB Screen® and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2015; 70:3014–3022. PMID: 26260131.
7. Pasteran F, Tijet N, Melano RG, Corso A. Simplified protocol for Carba NP test for enhanced detection of carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2015; 53:3908–3911. PMID: 26424841.
8. Pires J, Novais A, Peixe L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2013; 51:4281–4283. PMID: 24108615.
9. Pasteran F, Veliz O, Ceriana P, Lucero C, Rapoport M, Albornoz E, et al. Evaluation of the Blue-Carba test for rapid detection of carbapenemases in gram-negative bacilli. J Clin Microbiol. 2015; 53:1996–1998. PMID: 25809971.
10. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015; 10:e0123690. PMID: 25798828.
11. Yan Q, Liu Q, Li Y, Li H, Liang X, Zou M, et al. Detection of carbapenemase-producing gram-negative bacteria using a simplified Carba NP test. J Microbiol Methods. 2016; 123:1–3. PMID: 26854838.
12. Pires J, Tinguely R, Thomas B, Luzzaro F, Endimiani A. Comparison of the in-house made Carba-NP and Blue-Carba tests: Considerations for better detection of carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 2016; 122:33–37. PMID: 26773493.
13. Tijet N, Patel SN, Melano RG. Detection of carbapenemase activity in Enterobacteriaceae: comparison of the carbapenem inactivation method versus the Carba NP test. J Antimicrob Chemother. 2016; 71:274–276. PMID: 26374613.
14. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011; 70:119–123. PMID: 21398074.
15. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006; 27:351–353. PMID: 16564159.
16. Zhang C, Xu X, Pu S, Huang S, Sun J, Yang S, et al. Characterization of carbapenemases, extended spectrum β-lactamases, quinolone resistance and aminoglycoside resistance determinants in carbapenem-non-susceptible Escherichia coli from a teaching hospital in Chongqing, Southwest China. Infect Genet Evol. 2014; 27:271–276. PMID: 25107431.
17. Kim HK, Park JS, Sung H, Kim MN. Further modification of the modified Hodge test for detecting metallo-β-lactamase-producing carbapenem-resistant Enterobacteriaceae. Ann Lab Med. 2015; 35:298–305. PMID: 25932437.
18. Vasoo S, Cunningham SA, Kohner PC, Simner PJ, Mandrekar JN, Lolans K, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J Clin Microbiol. 2013; 51:3097–3101. PMID: 23824767.
19. Lifshitz Z, Adler A, Carmeli Y. Comparative study of a novel biochemical assay, the Rapidec Carba NP test, for detecting carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2016; 54:453–456. PMID: 26582833.
20. Desu MM, Raghavarao D. Sample size methodology. New York: Academic Press;1990.
21. Heinrichs A, Huang TD, Berhin C, Bogaerts P, Glupczynski Y. Evaluation of several phenotypic methods for the detection of carbapenemase-producing Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2015; 34:1467–1474. PMID: 25896858.
22. Genc O, Aksu E, Gulcan A. The identification of carbapenemase types in Enterobacteriaceae by using molecular assay and phenotyping confirmation tests. J Microbiol Methods. 2016; 125:8–11. PMID: 27015750.
23. Dortet L, Poirel L, Errera C, Nordmann P. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol. 2014; 52:2359–2364. PMID: 24759709.
24. Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol. 2011; 65:455–478. PMID: 21740228.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr