Yonsei Med J.  2016 Jul;57(4):817-823. 10.3349/ymj.2016.57.4.817.

Hearing Restoration in Neurofibromatosis Type II Patients

Affiliations
  • 1Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea. ismoonmd@yuhs.ac
  • 2Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea. changws0716@yuhs.ac

Abstract

Patients with neurofibromatosis type II will eventually succumb to bilateral deafness. For patients with hearing loss, modern medical science technology can provide efficient hearing restoration through a number of various methods. In this article, several hearing restoration methods for patients with neurofibromatosis type II are introduced.

Keyword

Neurofibromatosis type II; auditory brain stem implantation; cochlear implantation; hearing aids; vestibular schwannoma

MeSH Terms

Cochlear Implantation
Deafness/*etiology/*therapy
*Hearing Aids
Humans
Neurofibromatosis 2/*complications

Figure

  • Fig. 1 Mechanisms of a bone-conduction hearing implant. Vibrations generated from the device are transferred to the contralateral cochlea and recognized on the contralateral side.

  • Fig. 2 Categorization of bone-conduction hearing implants. (A) Ponto®. (B) Baha® BP100. (C) Bonebridge™. (D) Softband Baha®. (E) Baha® Attract. (F) Sophono®. Photos provided courtesy of Oticon Medical (A), Cochlear Bone Anchored Solutions AB (B, D, and E), MED-EL (C), and Medtronic (F).

  • Fig. 3 Concurrent tumor removal and auditory brainstem implant via the translabyrinthine approach. (A) Implantable internal device. (B) Diagram of auditory brainstem implant via translabyrinthine approach. The tumor, which originated from the cochleovestibular nerve, was resected with the nerve. A flat electrode was inserted, which stimulated the dorsal cochlear nucleus. Photos provided courtesy of Cochlear Headquarters (A). The figure was created by Dong-Su Jang, medical illustrator (B).

  • Fig. 4 Comparison of the retrosigmoid approach and the translabyrinthine approach for tumor removal. (A) Severe cerebellar retraction is needed to expose the tumor; however, tumors in the internal auditory canal are not readily removable via the retrosigmoid approach. (B) In the translabyrinthine approach, tumors in the internal auditory canal are well exposed without cerebellar retraction. Arrows indicate the direction of visual field.


Reference

1. Evans DG, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol. 2005; 26:93–97.
Article
2. Evans DG, Huson SM, Donnai D, Neary W, Blair V, Newton V, et al. A clinical study of type 2 neurofibromatosis. Q J Med. 1992; 84:603–618.
3. Asthagiri AR, Vasquez RA, Butman JA, Wu T, Morgan K, Brewer CC, et al. Mechanisms of hearing loss in neurofibromatosis type 2. PLoS One. 2012; 7:e46132.
Article
4. Masuda A, Fisher LM, Oppenheimer ML, Iqbal Z, Slattery WH. Natural History Consortium. Hearing changes after diagnosis in neurofibromatosis type 2. Otol Neurotol. 2004; 25:150–154.
Article
5. Graamans K, Van Dijk JE, Janssen LW. Hearing deterioration in patients with a non-growing vestibular schwannoma. Acta Otolaryngol. 2003; 123:51–54.
Article
6. Roosli C, Linthicum FH Jr, Cureoglu S, Merchant SN. Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity. Otol Neurotol. 2012; 33:473–480.
Article
7. Silverstein H. Labyrinthine tap as a diagnostic test for acoustic neurinoma. Otolaryngol Clin North Am. 1973; 6:229–244.
Article
8. Gates GA, Cooper JC Jr, Kannel WB, Miller NJ. Hearing in the elderly: the Framingham cohort, 1983-1985. Part I. Basic audiometric test results. Ear Hear. 1990; 11:247–256.
9. Flint PW, Haughey BH, Lund V, Niparko JK, Robbins KT, Thomas JR, et al. Cummings otolaryngology. Philadelphia, PA: Elsevier;2015.
10. Lotterman SH, Kasten RN. Examination of the CROS type hearing aid. J Speech Hear Res. 1971; 14:416–420.
Article
11. Lin LM, Bowditch S, Anderson MJ, May B, Cox KM, Niparko JK. Amplification in the rehabilitation of unilateral deafness: speech in noise and directional hearing effects with bone-anchored hearing and contralateral routing of signal amplification. Otol Neurotol. 2006; 27:172–182.
Article
12. Laske RD, Röösli C, Pfiffner F, Veraguth D, Huber AM. Functional results and subjective benefit of a transcutaneous bone conduction device in patients with single-sided deafness. Otol Neurotol. 2015; 36:1151–1156.
Article
13. Snapp H, Angeli S, Telischi FF, Fabry D. Postoperative validation of bone-anchored implants in the single-sided deafness population. Otol Neurotol. 2012; 33:291–296.
Article
14. Berger KW. Early bone conduction hearing aid devices. Arch Otolaryngol. 1976; 102:315–318.
Article
15. Kompis M, Kurz A, Pfiffner F, Senn P, Arnold A, Caversaccio M. Is complex signal processing for bone conduction hearing aids useful? Cochlear Implants Int. 2014; 15:Suppl 1. S47–S50.
Article
16. Dun CA, Faber HT, de Wolf MJ, Mylanus EA, Cremers CW, Hol MK. Assessment of more than 1,000 implanted percutaneous bone conduction devices: skin reactions and implant survival. Otol Neurotol. 2012; 33:192–198.
Article
17. Lassaletta L, Sanchez-Cuadrado I, Muñoz E, Gavilan J. Retrosigmoid implantation of an active bone conduction stimulator in a patient with chronic otitis media. Auris Nasus Larynx. 2014; 41:84–87.
Article
18. Hol MK, Cremers CW, Coppens-Schellekens W, Snik AF. The BAHA Softband. A new treatment for young children with bilateral congenital aural atresia. Int J Pediatr Otorhinolaryngol. 2005; 69:973–980.
19. Doshi J, McDermott AL. Bone anchored hearing aids in children. Expert Rev Med Devices. 2015; 12:73–82.
Article
20. Siegert R. Partially implantable bone conduction hearing aids without a percutaneous abutment (Otomag): technique and preliminary clinical results. Adv Otorhinolaryngol. 2011; 71:41–46.
Article
21. Heywood RL, Patel PM, Jonathan DA. Comparison of hearing thresholds obtained with Baha preoperative assessment tools and those obtained with the osseointegrated implant. Ear Nose Throat J. 2011; 90:E21–E27.
Article
22. Kurz A, Flynn M, Caversaccio M, Kompis M. Speech understanding with a new implant technology: a comparative study with a new nonskin penetrating Baha system. Biomed Res Int. 2014; 2014:416205.
Article
23. Reinfeldt S, Håkansson B, Taghavi H, Eeg-Olofsson M. New developments in bone-conduction hearing implants: a review. Med Devices (Auckl). 2015; 8:79–93.
Article
24. Jansson KJ, Håkansson B, Reinfeldt S, Rigato C, Eeg-Olofsson M. Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla. Med Devices (Auckl). 2015; 8:413–423.
25. Rha MS, Jeong SW, Seo YW, Moon IS. Hearing rehabilitation with Sophono® in patients with unilateral hearing loss after meningioma removal. Korean J Otorhinolaryngol-Head Neck Surg. 2015; 58:514–519.
Article
26. Steinmetz C, Mader I, Arndt S, Aschendorff A, Laszig R, Hassepass F. MRI artefacts after Bonebridge implantation. Eur Arch Otorhinolaryngol. 2014; 271:2079–2082.
Article
27. Toh EH, Luxford WM. Cochlear and brainstem implantation. 2002. Neurosurg Clin N Am. 2008; 19:317–329. vii.
28. Carlson ML, Breen JT, Driscoll CL, Link MJ, Neff BA, Gifford RH, et al. Cochlear implantation in patients with neurofibromatosis type 2: variables affecting auditory performance. Otol Neurotol. 2012; 33:853–862.
29. Hoffman RA, Kohan D, Cohen NL. Cochlear implants in the management of bilateral acoustic neuromas. Am J Otol. 1992; 13:525–528.
30. Prasad D, Steiner M, Steiner L. Gamma surgery for vestibular schwannoma. J Neurosurg. 2013; 119:Suppl. 745–759.
Article
31. Lustig LR, Yeagle J, Driscoll CL, Blevins N, Francis H, Niparko JK. Cochlear implantation in patients with neurofibromatosis type 2 and bilateral vestibular schwannoma. Otol Neurotol. 2006; 27:512–518.
Article
32. Evans DG, Birch JM, Ramsden RT, Sharif S, Baser ME. Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet. 2006; 43:289–294.
Article
33. Majdani O, Leinung M, Rau T, Akbarian A, Zimmerling M, Lenarz M, et al. Demagnetization of cochlear implants and temperature changes in 3.0T MRI environment. Otolaryngol Head Neck Surg. 2008; 139:833–839.
Article
34. Crane BT, Gottschalk B, Kraut M, Aygun N, Niparko JK. Magnetic resonance imaging at 1.5 T after cochlear implantation. Otol Neurotol. 2010; 31:1215–1220.
Article
35. Kim BG, Kim JW, Park JJ, Kim SH, Kim HN, Choi JY. Adverse events and discomfort during magnetic resonance imaging in cochlear implant recipients. JAMA Otolaryngol Head Neck Surg. 2015; 141:45–52.
Article
36. Kim JW, Moon IS. Simultaneous translabyrinthine tumor removal and cochlear implantation in vestibular schwannoma patients. Yonsei Med J. 2016; In press.
Article
37. Linthicum FH Jr, Brackmann DE. Bilateral acoustic tumors. A diagnostic and surgical challenge. Arch Otolaryngol. 1980; 106:729–733.
Article
38. Lambert PR, Ruth RA, Thomas JF. Promontory electrical stimulation in postoperative acoustic tumor patients. Laryngoscope. 1992; 102:814–819.
Article
39. Chamoun R, MacDonald J, Shelton C, Couldwell WT. Surgical approaches for resection of vestibular schwannomas: translabyrinthine, retrosigmoid, and middle fossa approaches. Neurosurg Focus. 2012; 33:E9.
Article
40. Cole T, Veeravagu A, Zhang M, Azad T, Swinney C, Li GH, et al. Retrosigmoid versus translabyrinthine approach for acoustic neuroma resection: an assessment of complications and payments in a longitudinal administrative database. Cureus. 2015; 7:e369.
Article
41. Neff BA, Wiet RM, Lasak JM, Cohen NL, Pillsbury HC, Ramsden RT, et al. Cochlear implantation in the neurofibromatosis type 2 patient: long-term follow-up. Laryngoscope. 2007; 117:1069–1072.
Article
42. Arístegui M, Denia A. Simultaneous cochlear implantation and translabyrinthine removal of vestibular schwannoma in an only hearing ear: report of two cases (neurofibromatosis type 2 and unilateral vestibular schwannoma). Otol Neurotol. 2005; 26:205–210.
Article
43. Vincenti V, Pasanisi E, Guida M, Di Trapani G, Sanna M. Hearing rehabilitation in neurofibromatosis type 2 patients: cochlear versus auditory brainstem implantation. Audiol Neurootol. 2008; 13:273–280.
Article
44. Tran Ba Huy P, Kania R, Frachet B, Poncet C, Legac MS. Auditory rehabilitation with cochlear implantation in patients with neurofibromatosis type 2. Acta Otolaryngol. 2009; 129:971–975.
Article
45. Celis-Aguilar E, Lassaletta L, Gavilán J. Cochlear implantation in patients with neurofibromatosis type 2 and patients with vestibular schwannoma in the only hearing ear. Int J Otolaryngol. 2012; 2012:157497.
Article
46. Choi JY, Song MH, Jeon JH, Lee WS, Chang JW. Early surgical results of auditory brainstem implantation in nontumor patients. Laryngoscope. 2011; 121:2610–2618.
Article
47. Bernardeschi D, Peyre M, Collin M, Smail M, Sterkers O, Kalamarides M. Internal auditory canal decompression for hearing maintenance in neurofibromatosis type 2 patients. Neurosurgery. 2015; 11. 16. DOI: 10.1227/neu.0000000000001125. [Epub].
Article
48. Monsell EM, McElveen JT Jr, Hitselberger WE, House WF. Surgical approaches to the human cochlear nuclear complex. Am J Otol. 1987; 8:450–455.
49. Waring MD. Intraoperative electrophysiologic monitoring to assist placement of auditory brain stem implant. Ann Otol Rhinol Laryngol Suppl. 1995; 166:33–36.
50. Lenarz M, Matthies C, Lesinski-Schiedat A, Frohne C, Rost U, Illg A, et al. Auditory brainstem implant part II: subjective assessment of functional outcome. Otol Neurotol. 2002; 23:694–697.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr