J Gastric Cancer.  2013 Dec;13(4):199-206.

Natural Orifice Transluminal Endoscopic Surgery and Upper Gastrointestinal Tract

Affiliations
  • 1Center for Gastric Cancer, National Cancer Center, Goyang, Korea. glse@chol.com

Abstract

Since the first transgastric natural orifice transluminal endoscopic surgery was described, various applications and modified procedures have been investigated. Transgastric natural orifice transluminal endoscopic surgery for periotoneoscopy, cholecystectomy, and appendectomy all seem viable in humans, but additional studies are required to demonstrate their benefits and roles in clinical practice. The submucosal tunneling method enhances the safety of peritoneal access and gastric closure and minimizes the risk of intraperitoneal leakage of gastric air and juice. Submucosal tunneling involves submucosal tumor resection and peroral endoscopic myotomy. Peroral endoscopic myotomy is a safe and effective treatment option for achalasia, and the most promising natural orifice transluminal endoscopic surgery procedure. Endoscopic full-thickness resection is a rapidly developing natural orifice transluminal endoscopic surgery procedure for the upper gastrointestinal tract and can be performed with a hybrid natural orifice transluminal endoscopic surgery technique (combining a laparoscopic approach) to overcome some limitations of pure natural orifice transluminal endoscopic surgery. Studies to identify the most appropriate role of endoscopic full-thickness resection are anticipated. In this article, I review the procedures of natural orifice transluminal endoscopic surgery associated with the upper gastrointestinal tract.

Keyword

Natural orifice transluminal endoscopic surgery; Peroral endoscopic myotomy; Endoscopic full-thickness resection

MeSH Terms

Appendectomy
Cholecystectomy
Esophageal Achalasia
Humans
Natural Orifice Endoscopic Surgery*
Upper Gastrointestinal Tract*

Reference

1. Santos BF, Hungness ES. Natural orifice translumenal endoscopic surgery: progress in humans since white paper. World J Gastroenterol. 2011; 17:1655–1665.
Article
2. Kalloo AN, Singh VK, Jagannath SB, Niiyama H, Hill SL, Vaughn CA, et al. Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc. 2004; 60:114–117.
3. Rattner DW, Hawes R, Schwaitzberg S, Kochman M, Swanstrom L. The Second SAGES/ASGE White Paper on natural orifice transluminal endoscopic surgery: 5 years of progress. Surg Endosc. 2011; 25:2441–2448.
4. Hazey JW, Narula VK, Renton DB, Reavis KM, Paul CM, Hinshaw KE, et al. Natural-orifice transgastric endoscopic peritoneoscopy in humans: initial clinical trial. Surg Endosc. 2008; 22:16–20.
Article
5. Salinas G, Saavedra L, Agurto H, Quispe R, Ramírez E, Grande J, et al. Early experience in human hybrid transgastric and transvaginal endoscopic cholecystectomy. Surg Endosc. 2010; 24:1092–1098.
Article
6. Kaehler G, Schoenberg MB, Kienle P, Post S, Magdeburg R. Transgastric appendicectomy. Br J Surg. 2013; 100:911–915.
Article
7. von Renteln D, Gutmann TE, Schmidt A, Vassiliou MC, Rudolph HU, Caca K. Standard diagnostic laparoscopy is superior to NOTES approaches: results of a blinded, randomized controlled porcine study. Endoscopy. 2012; 44:596–604.
Article
8. Sumiyama K, Gostout CJ, Rajan E, Bakken TA, Knipschield MA. Transesophageal mediastinoscopy by submucosal endoscopy with mucosal flap safety valve technique. Gastrointest Endosc. 2007; 65:679–683.
Article
9. Yoshizumi F, Yasuda K, Kawaguchi K, Suzuki K, Shiraishi N, Kitano S. Submucosal tunneling using endoscopic submucosal dissection for peritoneal access and closure in natural orifice transluminal endoscopic surgery: a porcine survival study. Endoscopy. 2009; 41:707–711.
Article
10. Lee CK, Lee SH, Chung IK, Lee TH, Lee SH, Kim HS, et al. Human diagnostic transgastric peritoneoscopy with the submucosal tunnel technique performed with the patient under conscious sedation (with video). Gastrointest Endosc. 2010; 72:889–891.
Article
11. Teoh AY, Chiu PW, Chan SM, Wong TC, Lau JY, Ng EK. Direct incision versus submucosal tunneling as a method of creating transgastric accesses for natural orifice transluminal endoscopic surgery (NOTES) peritoneoscopy: randomized controlled trial. Dig Endosc. 2013; 25:281–287.
Article
12. Inoue H, Ikeda H, Hosoya T, Onimaru M, Yoshida A, Eleftheriadis N, et al. Submucosal endoscopic tumor resection for subepithelial tumors in the esophagus and cardia. Endoscopy. 2012; 44:225–230.
Article
13. Gong W, Xiong Y, Zhi F, Liu S, Wang A, Jiang B. Preliminary experience of endoscopic submucosal tunnel dissection for upper gastrointestinal submucosal tumors. Endoscopy. 2012; 44:231–235.
Article
14. Lee SH, Kim SJ, Lee TH, Chung IK, Park SH, Kim EO, et al. Human applications of submucosal endoscopy under conscious sedation for pure natural orifice transluminal endoscopic surgery. Surg Endosc. 2013; 27:3016–3020.
Article
15. Wang L, Ren W, Zhang Z, Yu J, Li Y, Song Y. Retrospective study of endoscopic submucosal tunnel dissection (ESTD) for surgical resection of esophageal leiomyoma. Surg Endosc. 2013; 27:4259–4266.
Article
16. Liu BR, Song JT, Kong LJ, Pei FH, Wang XH, Du YJ. Tunneling endoscopic muscularis dissection for subepithelial tumors originating from the muscularis propria of the esophagus and gastric cardia. Surg Endosc. 2013; 27:4354–4359.
Article
17. Ye LP, Zhang Y, Mao XL, Zhu LH, Zhou X, Chen JY. Submucosal tunneling endoscopic resection for small upper gastrointestinal subepithelial tumors originating from the muscularis propria layer. Surg Endosc. 2013; [Epub ahead of print].
Article
18. Chuah SK, Chiu CH, Tai WC, Lee JH, Lu HI, Changchien CS, et al. Current status in the treatment options for esophageal achalasia. World J Gastroenterol. 2013; 19:5421–5429.
Article
19. Ortega JA, Madureri V, Perez L. Endoscopic myotomy in the treatment of achalasia. Gastrointest Endosc. 1980; 26:8–10.
Article
20. Pasricha PJ, Hawari R, Ahmed I, Chen J, Cotton PB, Hawes RH, et al. Submucosal endoscopic esophageal myotomy: a novel experimental approach for the treatment of achalasia. Endoscopy. 2007; 39:761–764.
Article
21. Inoue H, Minami H, Kobayashi Y, Sato Y, Kaga M, Suzuki M, et al. Peroral endoscopic myotomy (POEM) for esophageal achalasia. Endoscopy. 2010; 42:265–271.
Article
22. Kurian AA, Dunst CM, Sharata A, Bhayani NH, Reavis KM, Swanström LL. Peroral endoscopic esophageal myotomy: defining the learning curve. Gastrointest Endosc. 2013; 77:719–725.
Article
23. Von Renteln D, Fuchs KH, Fockens P, Bauerfeind P, Vassiliou MC, Werner YB, et al. Peroral endoscopic myotomy for the treatment of achalasia: an international prospective multicenter study. Gastroenterology. 2013; 145:309–311.e1-3.
Article
24. Richards WO, Torquati A, Holzman MD, Khaitan L, Byrne D, Lutfi R, et al. Heller myotomy versus Heller myotomy with Dor fundoplication for achalasia: a prospective randomized double-blind clinical trial. Ann Surg. 2004; 240:405–412.
Article
25. Falkenback D, Johansson J, Oberg S, Kjellin A, Wenner J, Zilling T, et al. Heller's esophagomyotomy with or without a 360 degrees floppy Nissen fundoplication for achalasia. Long-term results from a prospective randomized study. Dis Esophagus. 2003; 16:284–290.
Article
26. Ujiki MB, Yetasook AK, Zapf M, Linn JG, Carbray JM, Denham W. Peroral endoscopic myotomy: a short-term comparison with the standard laparoscopic approach. Surgery. 2013; 154:893–897.
Article
27. Bhayani NH, Kurian AA, Dunst CM, Sharata AM, Rieder E, Swanstrom LL. A comparative study on comprehensive, objective outcomes of laparoscopic heller myotomy with per-oral endoscopic myotomy (POEM) for achalasia. Ann Surg. 2013; [Epub ahead of print].
Article
28. Hungness ES, Teitelbaum EN, Santos BF, Arafat FO, Pandolfino JE, Kahrilas PJ, et al. Comparison of perioperative outcomes between peroral esophageal myotomy (POEM) and laparoscopic Heller myotomy. J Gastrointest Surg. 2013; 17:228–235.
Article
29. Schlag C, Wilhelm D, von Delius S, Feussner H, Meining A. EndoResect study: endoscopic full-thickness resection of gastric subepithelial tumors. Endoscopy. 2013; 45:4–11.
Article
30. Shi Q, Chen T, Zhong YS, Zhou PH, Ren Z, Xu MD, et al. Complete closure of large gastric defects after endoscopic full-thickness resection, using endoloop and metallic clip interrupted suture. Endoscopy. 2013; 45:329–334.
Article
31. Zhou PH, Yao LQ, Qin XY, Cai MY, Xu MD, Zhong YS, et al. Endoscopic full-thickness resection without laparoscopic assistance for gastric submucosal tumors originated from the muscularis propria. Surg Endosc. 2011; 25:2926–2931.
Article
32. Hiki N, Yamamoto Y, Fukunaga T, Yamaguchi T, Nunobe S, Tokunaga M, et al. Laparoscopic and endoscopic cooperative surgery for gastrointestinal stromal tumor dissection. Surg Endosc. 2008; 22:1729–1735.
Article
33. Tsujimoto H, Yaguchi Y, Kumano I, Takahata R, Ono S, Hase K. Successful gastric submucosal tumor resection using laparoscopic and endoscopic cooperative surgery. World J Surg. 2012; 36:327–330.
Article
34. Abe N, Mori T, Takeuchi H, Ueki H, Yanagida O, Masaki T, et al. Successful treatment of early stage gastric cancer by laparoscopy-assisted endoscopic full-thickness resection with lymphadenectomy. Gastrointest Endosc. 2008; 68:1220–1224.
Article
35. Abe N, Takeuchi H, Yanagida O, Masaki T, Mori T, Sugiyama M, et al. Endoscopic full-thickness resection with laparoscopic assistance as hybrid NOTES for gastric submucosal tumor. Surg Endosc. 2009; 23:1908–1913.
Article
36. Cho WY, Kim YJ, Cho JY, Bok GH, Jin SY, Lee TH, et al. Hybrid natural orifice transluminal endoscopic surgery: endoscopic full-thickness resection of early gastric cancer and laparoscopic regional lymph node dissection--14 human cases. Endoscopy. 2011; 43:134–139.
Article
37. Kitagawa Y, Takeuchi H, Takagi Y, Natsugoe S, Terashima M, Murakami N, et al. Sentinel node mapping for gastric cancer: a prospective multicenter trial in Japan. J Clin Oncol. 2013; 31:3704–3710.
Article
38. Inoue H, Ikeda H, Hosoya T, Yoshida A, Onimaru M, Suzuki M, et al. Endoscopic mucosal resection, endoscopic submucosal dissection, and beyond: full-layer resection for gastric cancer with nonexposure technique (CLEAN-NET). Surg Oncol Clin N Am. 2012; 21:129–140.
Article
39. Mitsui T, Niimi K, Yamashita H, Goto O, Aikou S, Hatao F, et al. Non-exposed endoscopic wall-inversion surgery as a novel partial gastrectomy technique. Gastric Cancer. 2013; [Epub ahead of print].
Article
40. Giday SA, Dray X, Magno P, Buscaglia JM, Shin EJ, Surti VC, et al. Infection during natural orifice transluminal endoscopic surgery: a randomized, controlled study in a live porcine model. Gastrointest Endosc. 2010; 71:812–816.
Article
41. Eickhoff A, Vetter S, von Renteln D, Caca K, Kähler G, Eickhoff JC, et al. Effectivity of current sterility methods for transgastric NOTES procedures: results of a randomized porcine study. Endoscopy. 2010; 42:748–752.
Article
42. Azadani A, Jonsson H, Park PO, Bergström M. A randomized trial comparing rates of abdominal contamination and postoperative infection among natural orifice transluminal endoscopic surgery, laparoscopic surgery, and open surgery in pigs. Gastrointest Endosc. 2012; 75:849–855.
Article
43. Narula VK, Happel LC, Volt K, Bergman S, Roland JC, Dettorre R, et al. Transgastric endoscopic peritoneoscopy does not require decontamination of the stomach in humans. Surg Endosc. 2009; 23:1331–1336.
Article
44. Nikfarjam M, McGee MF, Trunzo JA, Onders RP, Pearl JP, Poulose BK, et al. Transgastric natural-orifice transluminal endoscopic surgery peritoneoscopy in humans: a pilot study in efficacy and gastrotomy site selection by using a hybrid technique. Gastrointest Endosc. 2010; 72:279–283.
Article
45. Ramamoorthy SL, Lee JK, Mintz Y, Cullen J, Savu MK, Easter DW, et al. The impact of proton-pump inhibitors on intraperitoneal sepsis: a word of caution for transgastric NOTES procedures. Surg Endosc. 2010; 24:16–20.
Article
Full Text Links
  • JGC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr