Korean J Crit Care Med.  2016 Nov;31(4):342-350. 10.4266/kjccm.2016.00570.

Moderate to Severe Left Ventricular Ejection Fraction Related to Short-term Mortality of Patients with Post-cardiac Arrest Syndrome after Out-of-Hospital Cardiac Arrest

Affiliations
  • 1Department of Emergency Medicine, Gachon University Gil Medical Center, Incheon, Korea. empearl@gilhospital.com

Abstract

BACKGROUND
The aim of this study was to investigate the relationships between left ventricular ejection fraction (LVEF) and mortality and neurologic outcomes with post-cardiac arrest syndrome (PCAS) after out-of-hospital cardiac arrest (OHCA).
METHODS
Patients with PCAS after OHCA admitted to the intensive care unit between January 2014 and December 2015 were analyzed retrospectively.
RESULTS
total of 104 patients were enrolled in this study. The mean age was 54.4 ± 15.3 years, and 75 of the patients were male (72.1%). Arrest with a cardiac origin was found in 55 (52.9%). LVEF < 45%, 45-55%, and > 55% was measured in 39 (37.5%), 18 (17.3%), and 47 (45.2%) of patients, respectively. In multivariate analysis, severe LV dysfunction (LVEF < 45%) was significantly related to 7-day mortality (odds ratio 3.02, 95% Confidence Interval 1.01-9.0, p-value 0.047).
CONCLUSIONS
In this study, moderate to severe LVEF within 48 hours after return of spontaneous circulation was significantly related to 7-day short-term mortality in patients with PCAS after OHCA. Clinicians should actively treat myocardial dysfunction, and further studies are needed.

Keyword

echocardiography; outcome; out-of-hospital cardiac arrest

MeSH Terms

Echocardiography
Humans
Intensive Care Units
Male
Mortality*
Multivariate Analysis
Out-of-Hospital Cardiac Arrest*
Passive Cutaneous Anaphylaxis
Retrospective Studies
Stroke Volume*

Figure

  • Fig. 1. A flow diagram of the study. ROSC: return of spontaneous circulation; TTM: target temperature management; CPC: cerebral performance category.

  • Fig. 2. Adjusted* left ventricular ejection fraction in patients who were alive or dead at the 7-day point. *Adjusted for sex, time to ROSC, and APACHE II score. At the 7-day point after return of spontaneous circulation after cardio-pulmonary resuscitation, LV ejection fraction of survivors was more preserved than that of the dead (51.9 vs. 41.9; p = 0.02 by multiple regression analysis). Bar represents standard error.


Reference

References

1. Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa). Resuscitation. 2004; 63:233–49.
2. Nolan JP, Neumar RW, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008; 79:350–79.
3. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004; 30:2126–8.
Article
4. Adrie C, Laurent I, Monchi M, Cariou A, Dhainaou JF, Spaulding C. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care. 2004; 10:208–12.
Article
5. Kürkciyan I, Meron G, Sterz F, Janata K, Domanovits H, Holzer M, et al. Pulmonary embolism as cause of cardiac arrest: presentation and outcome. Arch Intern Med. 2000; 160:1529–35.
6. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013; 39:1972–80.
Article
7. Kilgannon JH, Roberts BW, Reihl LR, Chansky ME, Jones AE, Dellinger RP. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008; 79:410–6.
Article
8. Skulec R, Kovarnik T, Dostalova G, Kolar J, Linhart A. Induction of mild hypothermia in cardiac arrest survivors presenting with cardiogenic shock syndrome. Acta Anaesthesiol Scand. 2008; 52:188–94.
Article
9. Gerber BL, Wijns W, Vanoverschelde JL, Heyndrickx GR, De Bruyne B, Bartunek J, et al. Myocardial perfusion and oxygen consumption in reperfused noninfarcted dysfunctional myocardium after unstable angina angina: direct evidence for myocardial stunning in humans. J Am Coll Cardiol. 1999; 34:1939–46.
10. Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S, Díaz-Castellanos MA, Rucabado-Aguilar L, Gómez-Jiménez FJ, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005; 66:175–81.
Article
11. Ayoub IM, Kolarova J, Yi Z, Trevedi A, Deshmukh H, Lubell DL, et al. Sodium-hydrogen exchange inhibition during ventricular fibrillation: beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability. Circulation. 2003; 107:1804–9.
12. Robert BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Parrillo JE, et al. Multiple organ dysfunction after return of spontaneous circulation in postcardiac arrest syndrome. Crit Care Med. 2013; 41:1492–501.
13. Chalkias A, Xanthos T. Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail Rev. 2012; 17:117–28.
Article
14. Chang WT, Ma MH, Chien KL, Huang CH, Tsai MS, Shih FY, et al. Postresuscitation myocardial dysfunction: correlated factors and prognostic implications. Intensive Care Med. 2007; 33:88–95.
Article
15. Price S, Uddin S, Quinn T. Echocardiography in cardiac arrest. Curr Opin Crit Care. 2010; 16:211–5.
Article
16. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013; 39:1972–80.
Article
17. Herlitz J, Ekstrtöm L, Wennerblom B, Axelsson A, Bång A, Holmberg S. Hospital mortality after out-of-hospital cardiac arrest among patients found in ventricular fibrillation. Resuscitation. 1995; 29:11–21.
Article
18. Bro-Jeppesen J, Annborn M, Hassager C, Wise MP, Pelosi P, Nielsen N, et al. Hemodynamics and vasopressor support during targeted temperature management at 33°C Versus 36°C after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial. Crit Care Med. 2015; 43:318–27.
19. Thomsen JH, Hassager C, Bro-Jeppesen J, Søholm H, Nielsen N, Wanscher M, et al. Sinus bradycardia during hypothermia in comatose survivors of out-of-hospital cardiac arrest - a new early marker of favorable outcome? Resuscitation. 2015; 89:36–42.
Article
20. Jacobshagen C, Pelster T, Pax A, Horn W, Schweda SS, Unsöld BW, et al. Effects of mild hypothermia on hemodynamics in cardiac arrest survivors and isolated failing human myocardium. Clin Res Cardiol. 2010; 99:267–76.
Article
21. Laurent I, Monchi M, Chiche JD, Joly LM, Spaulding C, Bourgeois B, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002; 40:2110–6.
Article
22. Palmer BS, Hadziahmetovic M, Veci T, Angelos MG. Global ischemic duration and reperfusion function in the isolated perfused rat heart. Resuscitation. 2004; 62:97–106.
Article
23. Xie J, Weil MH, Sun S, Tang W, Sato Y, Jin X, et al. High-energy defibrillation increases the severity of posresuscitation myocardial dysfunction. Circulation. 1997; 96:683–8.
24. Torgersen C, Meichtry J, Schmittinger CA, Bloechlinger S, Jakob SM, Takala J, et al. Haemodynamic variables and functional outcome in hypothermic patients following out-of-hospital cardiac arrest. Resuscitation. 2013; 84:798–804.
Article
25. Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol. 2004; 44:340–8.
Article
26. Gonzalez MM, Berg RA, Nadkarni VM, Vianna CB, Kern KB, Timerman S, et al. Left ventricular systolic function and outcome after in-hospital cardiac arrest. Circulation. 2008; 117:1864–72.
Article
27. Ameloot K, Meex I, Genbrugge C, Jans F, Boer W, Verhaert D, et al. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: a prospective observational study. Resuscitation. 2015; 91:56–62.
Article
Full Text Links
  • KJCCM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr