J Korean Ophthalmol Soc.  2017 Feb;58(2):178-184. 10.3341/jkos.2017.58.2.178.

The Association between Corneal Biomechanical Properties and Initial Visual Field Defect Pattern in Normal Tension Glaucoma

Affiliations
  • 1The Institute of Ophthalmology and Optometry, Department of Ophthalmology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea. Ckrey@ewha.ac.kr

Abstract

PURPOSE
To investigate the association between corneal biomechanical properties and initial visual field defect pattern in normal tension glaucoma using an Ocular Response Analyzer (ORA; Reichert Instruments, Depew, NY, USA).
METHODS
Forty-one patients with normal tension glaucoma were divided into 2 subgroups, 21 patients with initial paracentral scotomas and 20 patients with initial peripheral scotomas. The corneal biomechanical properties of corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), corneal-compensated IOP (IOPcc) measured by the ORA, central corneal thickness, and Goldmann applanation tonometry were comparatively analyzed between the 2 groups.
RESULTS
The patients with initial peripheral scotomas were significantly younger than those with initial paracentral scotomas (49.45 ± 13.33 years vs. 58.14 ± 12.49 years, p = 0.035) and showed more myopia (− 2.42 ± 2.22 diopter vs. − 0.89 ± 2.22 diopter, p = 0.034). The mean CRF was significantly lower in the initial paracentral scotoma group than in the initial peripheral scotoma group. (9.45 ± 1.95 mmHg vs. 10.58 ± 2.05 mmHg; p = 0.041). No significant difference in CH, IOPg, or IOPcc was seen between the groups.
CONCLUSIONS
CRF was significantly different between the initial paracentral scotoma group and initial peripheral scotoma group in normal tension glaucoma. Thus, CRF may be useful to predict initial central field loss in normal tension glaucoma.

Keyword

Initial paracentral scotoma; Initial peripheral scotoma; Normal tension glaucoma; Ocular response analysis

MeSH Terms

Humans
Intraocular Pressure
Low Tension Glaucoma*
Manometry
Myopia
Scotoma
Visual Fields*

Reference

References

1. Drance S, Anderson DR, Schulzer M; Collaborative Normal- Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
Article
2. Grødum K, Heijl A, Bengtsson B.Refractive error and glaucoma. Acta Ophthalmol Scand. 2001; 79:560–6.
Article
3. Nakagami T, Yamazaki Y, Hayamizu F. Prognostic factors for pro-gression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2006; 50:38–43.
Article
4. Ramli N, Nurull BS, Hairi NN, Mimiwati Z. Low nocturnal ocular perfusion pressure as a risk factor for normal tension glaucoma. Prev Med. 2013; 57(Suppl):S47–9.
Article
5. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005; 31:146–55.
6. Whitacre MM, Stein R. Sources of error with use of Goldmann- type tonometers. Surv Ophthalmol. 1993; 38:1–30.
7. Francis BA, Hsieh A, Lai MY. . Effects of corneal thickness, corneal curvature, and intraocular pressure level on Goldmann ap-planation tonometry and dynamic contour tonometry. Ophthalmology. 2007; 114:20–6.
Article
8. Choi HJ, Kim DM, Hwang SS. Relationship between central cor-neal thickness and localized retinal nerve fiber layer defect in nor-mal-tension glaucoma. J Glaucoma. 2006; 15:120–3.
Article
9. Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hy-pertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol. 1999; 117:14–6.
Article
10. Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol. 2004; 122:17–21.
Article
11. Medeiros FA, Sample PA, Zangwill LM. . Corneal thickness as a risk factor for visual field loss in patients with preperimetric glau-comatous optic neuropathy. Am J Ophthalmol. 2003; 136:805–13.
Article
12. Congdon NG, Broman AT, Bandeen-Roche K. . Central cor-neal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006; 141:868–75.
Article
13. De Moraes CV, Hill V, Tello C. . Lower corneal hysteresis is as-sociated with more rapid glaucomatous visual field progression. J Glaucoma. 2012; 21:209–13.
Article
14. Medeiros FA, Meira-Freitas D, Lisboa R. . Corneal hysteresis as a risk factor for glaucoma progression: a prospective longi-tudinal study. Ophthalmology. 2013; 120:1533–40.
Article
15. Nah YS, Seong GJ, Kim CY. Visual function and quality of life in Korean patients with glaucoma. Korean J Ophthalmol. 2002; 16:70–4.
Article
16. Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993; 100:1808–14.
Article
17. Koseki N, Araie M, Suzuki Y, Yamagami J. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995; 39:274–83.
18. Ahrlich KG, De Moraes CG, Teng CC. . Visual field pro-gression differences between normal-tension and exfoliative high- tension glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:1458–63.
19. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31:156–62.
Article
20. Sullivan-Mee M, Billingsley SC, Patel AD. . Ocular Response Analyzer in subjects with and without glaucoma. Optom Vis Sci. 2008; 85:463–70.
Article
21. Shah S, Laiquzzaman M, Mantry S, Cunliffe I. Ocular response an-alyser to assess hysteresis and corneal resistance factor in low ten-sion, open angle glaucoma and ocular hypertension. Clin Experiment Ophthalmol. 2008; 36:508–13.
Article
22. Argus WA. Ocular hypertension and central corneal thickness. Ophthalmology. 1995; 102:1810–2.
Article
23. Kirwan C, O'Keefe M, Lanigan B.Corneal hysteresis and intra-ocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006; 142:990–2.
Article
24. Kolker AE. Visual prognosis in advanced glaucoma: a comparison of medical and surgical therapy for retention of vision in 101 eyes with advanced glaucoma. Trans Am Ophthalmol Soc. 1977; 75:539–55.
25. Park SC, De Moraes CG, Teng CC. . Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011; 118:1782–9.
Article
26. Kang JW, Park B, Cho BJ. Comparison of risk factors for initial central scotoma versus initial peripheral scotoma in normal-tension glaucoma. Korean J Ophthalmol. 2015; 29:102–8.
Article
27. Cho HK, Lee J, Lee M, Kee C. Initial central scotomas vs periph-eral scotomas in normal-tension glaucoma: clinical characteristics and progression rates. Eye (Lond). 2014; 28:303–11.
Article
28. Chihara E, Tanihara H. Parameters associated with papillomacular bundle defects in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:511–7.
Article
29. Chihara E, Sawada A. Atypical nerve fiber layer defects in high myopes with high-tension glaucoma. Arch Ophthalmol. 1990; 108:228–32.
Article
30. Chihara E, Honda Y. Multiple defects in the retinal nerve fiber layer in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:201–5.
Article
31. Kimura Y, Hangai M, Morooka S. . Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci. 2012; 53:6472–8.
Article
32. Ohno-Matsui K, Shimada N, Yasuzumi K. . Long-term devel-opment of significant visual field defects in highly myopic eyes. Am J Ophthalmol. 2011; 152:256–65.e1.
Article
33. Kang BW, Ji YS, Park SW. Analysis of factors related of location of initial visual field defect in normal tension glaucoma. J Korean Ophthalmol Soc. 2011; 52:1478–84.
Article
Full Text Links
  • JKOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr