J Korean Med Sci.  2016 Mar;31(3):382-388. 10.3346/jkms.2016.31.3.382.

Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis

Affiliations
  • 1Academic Research Unit, 2nd Department of Medicine, General Hospital Linz, Linz, Austria. herwigpi@yahoo.com
  • 2Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria.
  • 3Paracelsus Private Medical University Salzburg, Salzburg, Austria.
  • 4Rheumatologist in Private Practice, Wels, Austria.

Abstract

Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients.

Keyword

Albuminuria; Rheumatoid Arthritis; Augmentation Index; Diabetes

MeSH Terms

Aged
Albumins/analysis
Albuminuria/*complications
Arthritis, Rheumatoid/complications/*diagnosis
Cardiovascular Diseases/etiology
Cluster Analysis
Creatinine/urine
Diabetes Mellitus, Type 2/complications
Female
Humans
Male
Middle Aged
Pulse Wave Analysis
Risk Factors
Vascular Stiffness/*physiology
Albumins
Creatinine

Figure

  • Fig. 1 Cumulative distribution functions of ACR. Empirical cumulative distribution functions (CDFs) F_1, F_2, F_3, F_4, F_5, and F_6 of each of the four different patient samples and their corresponding unions. A logarithmically scaled x-axis (ACR) was used. At the end of the clustering process we have F_1 (small dotted line; no RA and no DM) and F_6 (black solid line; either RA or DM or both). ACR, albumin-creatinine ratio.

  • Fig. 2 ACR according to group 1 and 6. Circles and stars depict outliers and extreme outliers, respectively. The plot scale has been set to [0,60] in order to better examine the different levels of the medians. The median of ACR in group 1 is 4.5 mg/g, the median of ACR in group 6 is 8.1 mg/g (one-sided Mann-Whitney U-test, P < 0.001). ACR, albumin-creatinine ratio.


Reference

1. Pieringer H, Pichler M. Cardiovascular morbidity and mortality in patients with rheumatoid arthritis: vascular alterations and possible clinical implications. QJM. 2011; 104:13–26.
2. Pieringer H, Pichler M, Pohanka E, Hoppe UC. Will antirheumatic treatment improve cardiovascular outcomes in patients with rheumatoid arthritis? Curr Pharm Des. 2014; 20:486–495.
3. Perkovic V, Verdon C, Ninomiya T, Barzi F, Cass A, Patel A, Jardine M, Gallagher M, Turnbull F, Chalmers J, et al. The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med. 2008; 5:e207.
4. Park HE, Heo NJ, Kim M, Choi SY. Significance of microalbuminuria in relation to subclinical coronary atherosclerosis in asymptomatic nonhypertensive, nondiabetic subjects. J Korean Med Sci. 2013; 28:409–414.
5. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007; 49:S12–S154.
6. Arnlöv J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, Benjamin EJ, D'Agostino RB, Vasan RS. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation. 2005; 112:969–975.
7. Xu J, Knowler WC, Devereux RB, Yeh J, Umans JG, Begum M, Fabsitz RR, Lee ET. Albuminuria within the "normal" range and risk of cardiovascular disease and death in American Indians: the Strong Heart Study. Am J Kidney Dis. 2007; 49:208–216.
8. Miller WG, Bruns DE, Hortin GL, Sandberg S, Aakre KM, McQueen MJ, Itoh Y, Lieske JC, Seccombe DW, Jones G, et al. Current issues in measurement and reporting of urinary albumin excretion. Clin Chem. 2009; 55:24–38.
9. Pieringer H, Schumacher S, Stuby U, Biesenbach G. Augmentation index and large-artery remodeling in patients with longstanding rheumatoid arthritis compared with healthy controls. Semin Arthritis Rheum. 2009; 39:163–169.
10. Pieringer H, Brummaier T, Schmid M, Pichler M, Hayat-Khayyati A, Ebner S, Biesenbach G, Pohanka E. Rheumatoid arthritis is an independent risk factor for an increased augmentation index regardless of the coexistence of traditional cardiovascular risk factors. Semin Arthritis Rheum. 2012; 42:17–22.
11. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988; 31:315–324.
12. Roden M. Diabetes mellitus – definition, klassifikation und diagnose. Acta Med Austriaca. 2004; 31:156–157.
13. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ, et al. National Heart, Lung, and Blood Institute. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004; 110:227–239.
14. Prevoo ML, van't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995; 38:44–48.
15. Chae HW, Shin JI, Kwon AR, Kim HS, Kim DH. Spot urine albumin to creatinine ratio and serum cystatin C are effective for detection of diabetic nephropathy in childhood diabetic patients. J Korean Med Sci. 2012; 27:784–787.
16. Pauca AL, O'Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001; 38:932–937.
17. Weber T, Auer J, O'rourke MF, Kvas E, Lassnig E, Lamm G, Stark N, Rammer M, Eber B. Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J. 2005; 26:2657–2663.
18. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997; 95:1827–1836.
19. Chronic Kidney Disease Prognosis Consortium. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010; 375:2073–2081.
20. Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982; 1:1430–1432.
21. Lorenzo V, Saracho R, Zamora J, Rufino M, Torres A. Similar renal decline in diabetic and non-diabetic patients with comparable levels of albuminuria. Nephrol Dial Transplant. 2010; 25:835–841.
22. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009; 361:40–51.
23. An JH, Cho YM, Yu HG, Jang HC, Park KS, Kim SY, Lee HK. The clinical characteristics of normoalbuminuric renal insufficiency in Korean type 2 diabetic patients: a possible early stage renal complication. J Korean Med Sci. 2009; 24:Suppl. S75–S81.
24. Abdelhafiz AH, Ahmed S, El Nahas M. Microalbuminuria: marker or maker of cardiovascular disease. Nephron, Exp Nephrol. 2011; 119:Suppl 1. e6–e10.
25. Glassock RJ. Is the presence of microalbuminuria a relevant marker of kidney disease? Curr Hypertens Rep. 2010; 12:364–368.
26. Seo JY, Kim MK, Choi BY, Kim YM, Cho SI, Shin J. Elevated brachial-ankle pulse wave velocity is independently associated with microalbuminuria in a rural population. J Korean Med Sci. 2014; 29:941–949.
27. Haraldsson B, Nyström J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008; 88:451–487.
28. Comper WD, Russo LM. The glomerular filter: an imperfect barrier is required for perfect renal function. Curr Opin Nephrol Hypertens. 2009; 18:336–342.
29. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 2007; 71:504–513.
30. Choi SW, Yun WJ, Kim HY, Lee YH, Kweon SS, Rhee JA, Choi JS, Shin MH. Association between albuminuria, carotid atherosclerosis, arterial stiffness, and peripheral arterial disease in Korean type 2 diabetic patients. Kidney Blood Press Res. 2010; 33:111–118.
31. Silva AM, Schaan BD, Signori LU, Plentz RD, Moreno H Jr, Bertoluci MC, Irigoyen MC. Microalbuminuria is associated with impaired arterial and venous endothelium-dependent vasodilation in patients with Type 2 diabetes. J Endocrinol Invest. 2010; 33:696–700.
32. Malik AR, Sultan S, Turner ST, Kullo IJ. Urinary albumin excretion is associated with impaired flow- and nitroglycerin-mediated brachial artery dilatation in hypertensive adults. J Hum Hypertens. 2007; 21:231–238.
33. de Zeeuw D. Albuminuria, just a marker for cardiovascular disease, or is it more? J Am Soc Nephrol. 2005; 16:1883–1885.
34. Pedersen LM, Nordin H, Svensson B, Bliddal H. Microalbuminuria in patients with rheumatoid arthritis. Ann Rheum Dis. 1995; 54:189–192.
35. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, et al. 2007 ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC task force on the management of arterial hypertension. J Hypertens. 2007; 25:1751–1762.
36. Daoussis D, Panoulas VF, John H, Toms TE, Antonopoulos I, Treharne G, Nightingale P, Douglas KM, Kitas GD. Microalbuminuria in rheumatoid arthritis in the post penicillamine/gold era: association with hypertension, but not therapy or inflammation. Clin Rheumatol. 2011; 30:477–484.
37. Sellars L, Siamopoulos K, Wilkinson R, Leohapand T, Morley AR. Renal biopsy appearances in rheumatoid disease. Clin Nephrol. 1983; 20:114–120.
38. Boers M, Croonen AM, Dijkmans BA, Breedveld FC, Eulderink F, Cats A, Weening JJ. Renal findings in rheumatoid arthritis: clinical aspects of 132 necropsies. Ann Rheum Dis. 1987; 46:658–663.
39. Ramirez G, Lambert R, Bloomer HA. Renal pathology in patients with rheumatoid arthritis. Nephron. 1981; 28:124–126.
40. Gasparyan AY, Stavropoulos-Kalinoglou A, Mikhailidis DP, Toms TE, Douglas KM, Kitas GD. The rationale for comparative studies of accelerated atherosclerosis in rheumatic diseases. Curr Vasc Pharmacol. 2010; 8:437–449.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr