J Korean Ophthalmol Soc.  2011 Apr;52(4):414-419.

Comparison of Nd:YAG Capsulotomy Rates between Spherical and Aspheric Intraocular Lenses

Affiliations
  • 1The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea. taeimkim@gmail.com

Abstract

PURPOSE
The purpose of the present study is to compare Nd:YAG capsulotomy rates between spherical and aspheric intraocular lenses.
METHODS
The present retrospective study enrolled patients who received cataract surgery by a single surgeon between March 1, 2006 and October 31, 2009. Patients included in the study were implanted with SA60AT spherical intraocular lenses (Alcon, Fort Worth, TX, USA, 66 eyes), SN60AT spherical intraocular lenses (Alcon, 48 eyes; a total of 114 eyes), or SN60WF aspheric intraocular lenses (Alcon, 187 eyes). The Nd:YAG capsulotomy rates were compared between the two groups 6 months after the operation. Ten patients who were implanted with a spherical intraocular lens in one eye and an aspheric intraocular lens in the contralateral eye were analyzed separately.
RESULTS
Nd:YAG capsulotomy was performed in 2 of 114 eyes (1.8%) in the spherical intraocular lens group and 7 of 187 eyes (3.2%) in the aspheric intraocular lens group; no significant difference was found (p = 0.359). Among the 10 patients who were implanted with 2 different intraocular lenses, Nd:YAG capsulotomy was performed in only 1 eye in the aspheric intraocular lens group; no significant difference was found (p = 0.500).
CONCLUSIONS
The design of the intraocular lens, especially the shape of the posterior optic, does not influence the rate of Nd:YAG capsulotomy.

Keyword

Aspheric; Nd:YAG capsulotomy; Optic design; Posterior capsule opacification; Spherical

MeSH Terms

Cataract
Eye
Humans
Lenses, Intraocular
Retrospective Studies

Figure

  • Figure 1. Horizontal shape of SN60WF lens: a 9% reduction of central thickness than SN60AT lens. Red dotted line: an imaginary line of spherical SN60AT margin (provided from Alcon, Fort Worth, TX, USA).


Reference

References

1. Schaumberg DA, Dana MR, Christen WG, Glynn RJ. A systematic overview of the incidence of posterior capsule opacification. Ophthalmology. 1998; 105:1213–21.
Article
2. Vock L, Menapace R, Stifter E, et al. Posterior capsule opacification and neodymium:YAG laser capsulotomy rates with a round-edged silicone and a sharp-edged hydrophobic acrylic intraocular lens 10 years after surgery. J Cataract Refract Surg. 2009; 35:459–65.
Article
3. Awasthi N, Guo S, Wagner BJ. Posterior capsular opacification: a problem reduced but not yet eradicated. Arch Ophthalmol. 2009; 127:555–62.
4. Meacock WR, Spalton DJ, Stanford MR. Role of cytokines in the pathogenesis of posterior capsule opacification. Br J Ophthalmol. 2000; 84:332–6.
Article
5. Nishi O. Posterior capsule opacification. Part 1: Experimental investigations. J Cataract Refract Surg. 1999; 25:106–17.
6. Jung HW, Kim IC. Posterior capsular opacification and Nd:YAG laser capsulotomy in 811B, SI40NB, MA60BM intraocular lens. J Korean Ophthalmol Soc. 2003; 44:1072–8.
7. Aykan U, Bilge AH, Karadayi K, Akin T. The effect of capsulorhexis size on development of posterior capsule opacification: small (4.5 to 5.0 mm) versus large (6.0 to 7.0 mm). Eur J Ophthalmol. 2003; 13:541–5.
Article
8. Bolz M, Menapace R, Findl O, et al. Effect of anterior capsule polishing on the posterior capsule opacification-inhibiting properties of a sharp-edged, 3-piece, silicone intraocular lens: three- and 5-year results of a randomized trial. J Cataract Refract Surg. 2006; 32:1513–20.
9. Hollick EJ, Spalton DJ, Meacock WR. The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol. 1999; 128:271–9.
Article
10. Sacu S, Menapace R, Wirtitsch M, et al. Effect of anterior capsule polishing on fibrotic capsule opacification: three-year results. J Cataract Refract Surg. 2004; 30:2322–7.
11. Lee MJ, Lee JH. The factors affecting early development of posterior capsular opacification after cataract surgery. J Korean Ophthalmol Soc. 2007; 48:493–8.
12. Suh SW, Kim MS. A study of factors influencing after cataract development. J Korean Ophthalmol Soc. 2001; 42:1685–90.
13. Biber JM, Sandoval HP, Trivedi RH, et al. Comparison of the incidence and visual significance of posterior capsule opacification between multifocal spherical, monofocal spherical, and monofocal aspheric intraocular lenses. J Cataract Refract Surg. 2009; 35:1234–8.
Article
14. Buehl W, Findl O. Effect of intraocular lens design on posterior capsule opacification. J Cataract Refract Surg. 2008; 34:1976–85.
Article
15. Buehl W, Menapace R, Sacu S, et al. Effect of a silicone intraocular lens with a sharp posterior optic edge on posterior capsule opacification. J Cataract Refract Surg. 2004; 30:1661–7.
Article
16. Li N, Chen X, Zhang J, et al. Effect of AcrySof versus silicone or polymethyl methacrylate intraocular lens on posterior capsule opacification. Ophthalmology. 2008; 115:830–8.
Article
17. Sacu S, Menapace R, Buehl W, et al. Effect of intraocular lens optic edge design and material on fibrotic capsule opacification and capsulorhexis contraction. J Cataract Refract Surg. 2004; 30:1875–82.
Article
18. Rönbeck M, Zetterström C, Wejde G, Kugelberg M. Comparison of posterior capsule opacification development with 3 intraocular lens types: five-year prospective study. J Cataract Refract Surg. 2009; 35:1935–40.
19. Dewey S. Posterior capsule opacification. Curr Opin Ophthalmol. 2006; 17:45–53.
Article
20. Burq MA, Taqui AM. Frequency of retinal detachment and other complications after neodymium:Yag laser capsulotomy. J Pak Med Assoc. 2008; 58:550–2.
21. Holweger RR, Marefat B. Intraocular pressure change after neo-dymium:YAG capsulotomy. J Cataract Refract Surg. 1997; 23:115–21.
Article
22. Steinert RF, Puliafito CA, Kumar SR, et al. Cystoid macular edema, retinal detachment, and glaucoma after Nd:YAG laser posterior capsulotomy. Am J Ophthalmol. 1991; 112:373–80.
Article
23. Trinavarat A, Atchaneeyasakul L, Udompunturak S. Neodymium: YAG laser damage threshold of foldable intraocular lenses. J Cataract Refract Surg. 2001; 27:775–80.
24. Trueb PR, Albach C, Montés-Micó R, Ferrer-Blasco T. Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses. Ophthalmology. 2009; 116:890–5.
Article
25. Rocha KM, Soriano ES, Chamon W, et al. Spherical aberration and depth of focus in eyes implanted with aspheric and spherical intraocular lenses: a prospective randomized study. Ophthalmology. 2007; 114:2050–4.
26. Nanavaty MA, Spalton DJ, Boyce J, et al. Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study. J Cataract Refract Surg. 2009; 35:663–71.
Article
27. Ohtani S, Miyata K, Samejima T, et al. Intraindividual comparison of aspherical and spherical intraocular lenses of same material and platform. Ophthalmology. 2009; 116:896–901.
Article
28. Cadarso L, Iglesias A, Ollero A, et al. Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses. J Refract Surg. 2008; 24:811–6.
Article
29. Marshall J, Cionni RJ, Davison J, et al. Clinical results of the blue-light filtering AcrySof Natural foldable acrylic intraocular lens. J Cataract Refract Surg. 2005; 31:2319–23.
Article
30. Monnet D, Tépenier L, Brézin AP. Objective assessment of inflammation after cataract surgery: comparison of 3 similar intraocular lens models. J Cataract Refract Surg. 2009; 35:677–81.
Article
31. Beauchamp CL, Stager DR Jr, Weakley DR Jr, et al. Surgical findings with the tinted AcrySof intraocular lens in children. J AAPOS. 2007; 11:166–9.
Article
32. Leibovitch I, Lai T, Porter N, et al. Visual outcomes with the yel-low intraocular lens. Acta Ophthalmol Scand. 2006; 84:95–9.
Article
33. Nixon DR, Woodcock MG. Pattern of posterior capsule opacification models 2 years postoperatively with 2 single-piece acrylic intraocular lenses. J Cataract Refract Surg. 2010; 36:929–34.
Article
34. Shah VC, Russo C, Cannon R, et al. Incidence of Nd:YAG Capsulotomy After Implantation of AcrySof Multifocal and Monofocal Intraocular Lenses: A Case Controlled Study. J Refract Surg. 2010; 26:565–8.
Article
35. Kugelberg M, Wejde G, Jayaram H, Zetterström C. Posterior capsule opacification after implantation of a hydrophilic or a hydrophobic acrylic intraocular lens: one-year follow-up. J Cataract Refract Surg. 2006; 32:1627–31.
36. Kugelberg M, Wejde G, Jayaram H, Zetterström C. Two-year fol-low-up of posterior capsule opacification after implantation of a hydrophilic or hydrophobic acrylic intraocular lens. Acta Ophthalmol. 2008; 86:533–6.
Article
37. Bertelmann E, Kojetinsky C. Posterior capsule opacification and anterior capsule opacification. Curr Opin Ophthalmol. 2001; 12:35–40.
Article
Full Text Links
  • JKOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr