Nat Prod Sci.  2016 Jun;22(2):87-92. 10.20307/nps.2016.22.2.87.

Tea Flavonoids Induced Differentiation of Peripheral Blood-derived Mononuclear Cells into Peripheral Blood-derived Endothelial Progenitor Cells and Suppressed Intracellular Reactive Oxygen Species Level of Peripheral Blood-derived Endothelial Progenitor Cells

Affiliations
  • 1Medical Research Center, Faculty of Medicine, Maranatha Christian University, Bandung 40164, Indonesia. wahyu_w60@yahoo.com
  • 2Stem Cell and Cancer Institute, Jakarta 13210, Indonesia.
  • 3Faculty of Pharmacy, Pancasila University, Jakarta 12640, Indonesia.
  • 4Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia.
  • 5Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung 40163, Indonesia.
  • 6Faculty of Dentistry, Trisakti University, Jakarta 11440, Indonesia. ferrysandra@yahoo.com
  • 7Prodia Clinical Laboratory, Jakarta 10430, Indonesia.

Abstract

Endothelial dysfunction in atherosclerosis is associated with increasing oxidative stress that could be reversed by antioxidant. Therefore epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and catechin (C) of tea flavonoids were investigated for their roles in regenerating endothelial cell. Peripheral blood mononuclear cells (PB-MNCs) were isolated, plated and cultured in medium with/without treatment of EGCG, ECG, EGC and C. Results showed that among all EGCG, ECG, EGC and C concentrations tested, 12.5 µmol/L was not cytotoxic for peripheral blood-derived endothelial progenitor cells (PB-EPCs). Treatment of EGCG, ECG, EGC or C increased the percentages of CD34, CD133, VEGFR-2 expressions and suppressed hydrogen peroxide-induced percentages of reactive oxygen species (ROS) level in PB-EPCs. Taken together, our current results showed that EGCG, ECG, EGC or C of tea flavonoids could induce differentiation of PB-MNCs into PB-EPCs as well as protect PB-EPCs from oxidative damage by suppresing the intracellular ROS levels.

Keyword

Tea flavonoids; Antioxidant; Endothelial progenitor cell; Differentiation; ROS; Apoptosis

MeSH Terms

Apoptosis
Atherosclerosis
Catechin
Electrocardiography
Endothelial Cells
Endothelial Progenitor Cells*
Flavonoids*
Hydrogen
Oxidative Stress
Reactive Oxygen Species*
Tea*
Vascular Endothelial Growth Factor Receptor-2
Catechin
Flavonoids
Hydrogen
Reactive Oxygen Species
Tea
Vascular Endothelial Growth Factor Receptor-2

Figure

  • Fig. 1. Chemical Structures of catechins. Structures of (−)-epigallocatechin gallate (EGCG) (a), (−)-epicatechin gallate (ECG)(b), (−)-epigallocatechin (EGC) (c), and (+)-catechin (C) (d).

  • Fig. 2. PB-EPCs lectin binding and LDL uptake. PB-EPCs were seeded in 96-well plate and subjected to Fluorescent Staining as described in Experimental. A: DAPI, B: FITC-UEA-I, C: Dil-acLDL, D: Merge of A, B and C. White bar: 50 μ m.

  • Fig. 3. PB-EPCs immunophenotypes. PB-EPCs were detached and subjected to Immunophenotyping as described in Experimental. A: isotype, B: CD34/45, C: CD133 and its isotype, D: VEGF-R2 and its isotype.


Reference

(1). Bonetti P. O., Lerman L. O., Lerman A.Arterioscler. Thromb. Vasc. Biol. 2003; 23:168–175.
(2). Higashi Y., Noma K., Yoshizumi M., Kihara Y.Circ. J. 2009; 73:411–418.
(3). Diaz M. N., Frei B., Vita J. A., Keaney J. F. Jr.N. Engl. J. Med. 1997; 337:408–416.
(4). Lin J., Cook N. R., Albert C., Zaharris E., Gaziano J. M., Van Denburgh M., Buring J. E., Manson J. E. J.Natl. Cancer Inst. 2009; 101:14–23.
(5). Yang C. S., Landau J. M. J.Nutr. 2000; 130:2409–2412.
(6). Trevisanato S. I., Kim Y. I.Nutr. Rev. 2000; 58:1–10.
(7). Shenouda S. M., Vita J. A. J.Am. Coll. Nutr. 2007; 26:366S–372S.
(8). Grassi D., Mulder T. P., Draijer R., Desideri G., Molhuizen H. O., Ferri C. J.Hypertens. 2009; 27:774–781.
(9). Hertog M. G., Feskens E. J., Hollman P. C., Katan M. B., Kromhout D.Lancet. 1993; 342:1007–1011.
(10). Mukamal K. J., Maclure M., Muller J. E., Sherwood J. B., Mittleman M. A.Circulation. 2002; 105:2476–2481.
(11). Balentine D. A., Wiseman S. A., Bouwens L. C.Crit. Rev. Food Sci. Nutr. 1997; 37:693–704.
(12). Wolfram S. J.Am. Coll. Nutr. 2007; 26:373S–388S.
(13). Sano M., Tabata M., Suzuki M., Degawa M., Miyase T., Maeda-Yamamoto M.Analyst. 2001; 126:816–820.
(14). Widowati W., Widyanto R. M., Husin W., Ratnawati H., Laksmitawati D. R., Setiawan B., Nugrahenny D., Bachtiar I.Iran J. Basic Med. Sci. 2014; 17:702–709.
(15). Wollert K. C., Drexler H.Circ. Res. 2005; 96:151–163.
(16). Sagara Y., Vanhnasy J., Maher P. J.Neurochem. 2004; 90:1144–1155.
(17). Widowati W., Sardjono C. T., Wijaya L., Laksmitawati D. R., Sandra F. J.US-China Med. Sci. 2012; 9:22–29.
(18). Murphy T. H., Miyamoto M., Sastre A., Schnaar R. L., Coyle J. T.Neuron. 1989; 2:1547–1558.
(19). LeBel C. P., Ischiropoulos H., Bondy S. C.Chem. Res. Toxicol. 1992; 5:227–231.
(20). Jie G., Lin Z., Zhang L., Lv H., He P., Zhao B. J.Agric. Food Chem. 2006; 54:8058–8064.
(21). Valko M., Leibfritz D., Moncol J., Cronin M. T., Mazur M., Telser J.Int. J. Biochem. Cell Biol. 2007; 39:44–84.
(22). Evacuasiany E., Ratnawati H., Liana L. K., Widowati W., Maesaroh M., Mozef T., Risdian C.Oxid. Antioxid. Med. Sci. 2014; 3:141–146.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr