Obstet Gynecol Sci.  2015 Mar;58(2):157-161. 10.5468/ogs.2015.58.2.157.

Neutrophil-lymphocyte and platelet-lymphocyte ratios in endometrial hyperplasia

Affiliations
  • 1Department of Obstetrics and Gynecology, Gaziosmanpasa University, Tokat, Turkey. drbulentcakmak@hotmail.com
  • 2Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA.
  • 3Gaziosmanpasa University, Tokat, Turkey.

Abstract


OBJECTIVE
The purpose of present study was to evaluate association between neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) and endometrial hyperplasia (EH).
METHODS
One hundred and ten women with abnormal uterine bleeding were included into the study. Blood samples were drawn from all patients to obtain complete blood cell counts, neutrophil-leukocyte ratio and platelet-leukocyte ratio before endometrial curettage procedure initiated. The patients were divided into three groups due to their pathological results: group 1, patients with EH without atypia (n=40); group 2, patients with EH with atypia (n=15); and group 3, patients with neither hyperplasia nor cancer as control group (n=55). Blood cell counts, NLRs and PLRs were compared among these groups.
RESULTS
Based on hemoglobin and platelet counts, there was no significant difference among these groups (P>0.05). Leukocyte and neutrophil counts were higher in group 2 (EH with atypia) than group 1 and group 3 (P<0.01). NLR of group 2 was significantly elevated when compared to group 1 and group 3 (P=0.004). PLR was higher in group 1 and group 2 than control group (P=0.024).
CONCLUSION
Non-specific inflammatory markers such as NLR and PLR were elevated in women with atypical EH. These markers may be used as a predictor of atypical EH in patients with abnormal uterine bleeding.

Keyword

Atypia; Blood cells; Endometrial hyperplasia; Inflammatory; Markers

MeSH Terms

Blood Cell Count
Blood Cells
Curettage
Endometrial Hyperplasia*
Female
Humans
Hyperplasia
Leukocytes
Neutrophils
Platelet Count
Uterine Hemorrhage

Reference

1. Heller DS, Mosquera C, Goldsmith LT, Cracchiolo B. Body mass index of patients with endometrial hyperplasia: comparison to patients with proliferative endometrium and abnormal bleeding. J Reprod Med. 2011; 56:110–112.
2. Akhmedkhanov A, Zeleniuch-Jacquotte A, Toniolo P. Role of exogenous and endogenous hormones in endometrial cancer: review of the evidence and research perspectives. Ann N Y Acad Sci. 2001; 943:296–315.
3. Modugno F, Ness RB, Chen C, Weiss NS. Inflammation and endometrial cancer: a hypothesis. Cancer Epidemiol Biomarkers Prev. 2005; 14:2840–2847.
4. Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003; 125:301–311.
5. Haider S, Knofler M. Human tumour necrosis factor: physiological and pathological roles in placenta and endometrium. Placenta. 2009; 30:111–123.
6. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 2010; 21:27–39.
7. Celikbilek M, Dogan S, Ozbakır O, Zararsız G, Kucuk H, Gursoy S, et al. Neutrophil-lymphocyte ratio as a predictor of disease severity in ulcerative colitis. J Clin Lab Anal. 2013; 27:72–76.
8. Tousoulis D, Antoniades C, Koumallos N, Stefanadis C. Pro-inflammatory cytokines in acute coronary syndromes: from bench to bedside. Cytokine Growth Factor Rev. 2006; 17:225–233.
9. Acmaz G, Aksoy H, Unal D, Ozyurt S, Cingillioglu B, Aksoy U, et al. Are neutrophil/lymphocyte and platelet/lymphocyte ratios associated with endometrial precancerous and cancerous lesions in patients with abnormal uterine bleeding? Asian Pac J Cancer Prev. 2014; 15:1689–1692.
10. Proctor MJ, Morrison DS, Talwar D, Balmer SM, Fletcher CD, O’Reilly DS, et al. A comparison of inflammation-based prognostic scores in patients with cancer: a Glasgow Inflammation Outcome Study. Eur J Cancer. 2011; 47:2633–2641.
11. Metindir J, Bilir Dilek G. Preoperative hemoglobin and platelet count and poor prognostic factors in patients with endometrial carcinoma. J Cancer Res Clin Oncol. 2009; 135:125–129.
12. Njolstad TS, Engerud H, Werner HM, Salvesen HB, Trovik J. Preoperative anemia, leukocytosis and thrombocytosis identify aggressive endometrial carcinomas. Gynecol Oncol. 2013; 131:410–415.
13. Ayhan A, Bozdag G, Taskiran C, Gultekin M, Yuce K, Kucukali T. The value of preoperative platelet count in the prediction of cervical involvement and poor prognostic variables in patients with endometrial carcinoma. Gynecol Oncol. 2006; 103:902–905.
14. Oge T, Yalcin OT, Ozalp SS, Isikci T. Platelet volume as a parameter for platelet activation in patients with endometrial cancer. J Obstet Gynaecol. 2013; 33:301–304.
15. Wang D, Yang JX, Cao DY, Wan XR, Feng FZ, Huang HF, et al. Preoperative neutrophil-lymphocyte and plateletlymphocyte ratios as independent predictors of cervical stromal involvement in surgically treated endometrioid adenocarcinoma. Onco Targets Ther. 2013; 6:211–216.
16. Friedenreich CM, Langley AR, Speidel TP, Lau DC, Courneya KS, Csizmadi I, et al. Case-control study of inflammatory markers and the risk of endometrial cancer. Eur J Cancer Prev. 2013; 22:374–379.
17. Dossus L, Lukanova A, Rinaldi S, Allen N, Cust AE, Becker S, et al. Hormonal, metabolic, and inflammatory profiles and endometrial cancer risk within the EPIC cohort: a factor analysis. Am J Epidemiol. 2013; 177:787–799.
18. Delahanty RJ, Xiang YB, Spurdle A, Beeghly-Fadiel A, Long J, Thompson D, et al. Polymorphisms in inflammation pathway genes and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev. 2013; 22:216–223.
19. Deivendran S, Marzook KH, Radhakrishna Pillai M. The role of inflammation in cervical cancer. Adv Exp Med Biol. 2014; 816:377–399.
20. Lee YY, Choi CH, Kim HJ, Kim TJ, Lee JW, Lee JH, et al. Pretreatment neutrophil:lymphocyte ratio as a prognostic factor in cervical carcinoma. Anticancer Res. 2012; 32:1555–1561.
21. Wang D, Wu M, Feng FZ, Huang HF, Yang JX, Shen K, et al. Pretreatment neutrophil-to-lymphocyte and plateletto-lymphocyte ratios do not predict survival in patients with cervical cancer treated with neoadjuvant chemotherapy and radical hysterectomy. Chin Med J (Engl). 2013; 126:1464–1468.
22. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004; 4:579–591.
23. Austin H, Austin JM Jr, Partridge EE, Hatch KD, Shingleton HM. Endometrial cancer, obesity, and body fat distribution. Cancer Res. 1991; 51:568–572.
24. Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev. 2002; 11:1531–1543.
25. Dossus L, Rinaldi S, Becker S, Lukanova A, Tjonneland A, Olsen A, et al. Obesity, inflammatory markers, and endometrial cancer risk: a prospective case-control study. Endocr Relat Cancer. 2010; 17:1007–1019.
26. Wang T, Rohan TE, Gunter MJ, Xue X, Wactawski-Wende J, Rajpathak SN, et al. A prospective study of inflammation markers and endometrial cancer risk in postmenopausal hormone nonusers. Cancer Epidemiol Biomarkers Prev. 2011; 20:971–977.
Full Text Links
  • OGS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr