Korean J Physiol Pharmacol.  2014 Jun;18(3):201-209. 10.4196/kjpp.2014.18.3.201.

Ameliorative Effect of a Selective Endothelin ETA Receptor Antagonist in Rat Model of L-Methionine-induced Vascular Dementia

Affiliations
  • 1Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala (Punjab) 147002, India. nirmal_puru@rediffmail.com

Abstract

The present study was designed to investigate the efficacy of selective ET(A) receptor antagonist, ambrisentan on hyperhomocysteinemia-induced experimental vascular dementia. L-methionine was administered for 8 weeks to induce hyperhomocysteinemia and associated vascular dementia in male rats. Ambrisentan was administered to L-methionine-treated effect rats for 4 weeks (starting from 5th to 8th week of L-methionine treatment). On 52nd day onward, the animals were exposed to the Morris water maze (MWM) for testing their learning and memory abilities. Vascular endothelial function, serum nitrite/nitrate levels, brain thiobarbituric acid reactive species (TBARS), brain reduced glutathione (GSH) levels, and brain acetylcholinesterase (AChE) activity were also measured. L-methionine-treated animals showed significant learning and memory impairment, endothelial dysfunction, decrease in/serum nitrite/nitrate and brain GSH levels along with an increase in brain TBARS levels and AChE activity. Ambrisentan significantly improved hyperhomocysteinemia-induced impairment of learning, memory, endothelial dysfunction, and changes in various biochemical parameters. These effects were comparable to that of donepezil serving as positive control. It is concluded that ambrisentan, a selective ET(A) receptor antagonist may be considered as a potential pharmacological agent for the management of hyperhomocysteinemia-induced vascular dementia.

Keyword

Ambrisen; L-Methionine; Morris water-maze; Vascular dementia

MeSH Terms

Acetylcholinesterase
Animals
Brain
Dementia, Vascular*
Endothelins*
Glutathione
Humans
Hyperhomocysteinemia
Learning
Male
Memory
Methionine
Models, Animal*
Rats
Thiobarbituric Acid Reactive Substances
Acetylcholinesterase
Endothelins
Glutathione
Methionine
Thiobarbituric Acid Reactive Substances

Figure

  • Fig. 1 Schematic presentation of experimental protocol.

  • Fig. 2 Effect of pharmacological interventions on mean time spent in the target quadrant (TSTQ) using Morris water-maze test. L-MET, L-Methionine; Amb LD, Ambrisentan low dose; Amb HD, Ambrisentan high dose; DON, Donepezil; CMC, Carboxymethylcellulose. Each group (n=6) represents mean±standard deviation. Two way ANOVA followed by Bonferroni post hoc test. ap<0.05 versus mean time spent in other quadrants in control; bp<0.05 versus mean time spent in the target quadrant in control group; cp<0.05 versus mean time spent in the target quadrant in L-Methionine treated group.

  • Fig. 3 Effect of pharmacological interventions on Ach-induced endothelium-dependent relaxation using an aortic ring preparation. L-MET, L-Methionine; Amb LD, Ambrisentan low dose; Amb HD, Ambrisentan high dose; DON, Donepezil; CMC, Carboxymethylcellulose. Each group (n=6) represents mean±standard deviation. Responses are expressed as percentage of precontraction induced by 3×10-6 M phenylephrine. Repeated measure ANOVA followed by Newman Keul's test. ap<0.05 versus control; bp<0.05 versus L-Methionine treated group.

  • Fig. 4 Effect of pharmacological interventions on endothelium independent relaxation using an aortic ring preparation. L-MET, L-Methionine; Amb LD, Ambrisentan low dose; Amb HD, Ambrisentan high dose; DON, Donepezil; CMC, Carboxymethylcellulose. Each group (n=6) represents mean±standard deviation. Responses are expressed as percentage of precontraction induced by 3×10-6 M phenylephrine. Repeated measure ANOVA followed by Newman Keul's test.


Reference

1. Pieper MJ, van Dalen-Kok AH, Francke AL, van der Steen JT, Scherder EJ, Husebø BS, Achterberg WP. Interventions targeting pain or behaviour in dementia: A systematic review. Ageing Res Rev. 2013; 12:1042–1055. PMID: 23727161.
Article
2. Han HS, Jang JH, Jang JH, Choi JS, Kim YJ, Lee C, Lim SH, Lee HK, Lee J. Water extract of Triticum aestivum L. and its components demonstrate protective effect in a model of vascular dementia. J Med Food. 2010; 13:572–578. PMID: 20521983.
Article
3. Sharma B, Singh N. Attenuation of vascular dementia by sodium butyrate in streptozotocin diabetic rats. Psychopharmacology (Berl). 2011; 215:677–687. PMID: 21225418.
Article
4. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013; 9:63–75. PMID: 23305823.
Article
5. Catindig JA, Venketasubramanian N, Ikram MK, Chen C. Epidemiology of dementia in Asia: insights on prevalence, trends and novel risk factors. J Neurol Sci. 2012; 321:11–16. PMID: 22877510.
Article
6. Bickel H, Ander KH, Brönner M, Etgen T, Gnahn H, Gotzler O, Poppert H, Pürner K, Sander D, Förstl H. Reduction of long-term care dependence after an 8-year primary care prevention program for stroke and dementia: the INVADE trial. J Am Heart Assoc. 2012; 1:e000786. PMID: 23130154.
Article
7. Igoumenou A, Ebmeier KP. Diagnosing and managing vascular dementia. Practitioner. 2012; 256:13–16. 2PMID: 22720454.
8. Lüders S, Stöve S, Schrader J. Prevention of vascular dementia. Evidence and practice. Internist (Berl). 2012; 53:223–231. PMID: 22119909.
9. Peters R. Blood pressure, smoking and alcohol use, association with vascular dementia. Exp Gerontol. 2012; 47:865–872. PMID: 22664578.
Article
10. Korczyn AD, Vakhapova V, Grinberg LT. Vascular dementia. J Neurol Sci. 2012; 322:2–10. PMID: 22575403.
Article
11. Fei M, Yan Ping Z, Ru Juan M, Ning Ning L, Lin G. Risk factors for dementia with type 2 diabetes mellitus among elderly people in China. Age Ageing. 2013; 42:398–400. PMID: 23299282.
Article
12. Koladiya RU, Jaggi AS, Singh N, Sharma BK. Ameliorative role of Atorvastatin and Pitavastatin in L-Methionine induced vascular dementia in rats. BMC Pharmacol. 2008; 8:14. PMID: 18691432.
Article
13. Sharma B, Singh N. Salutary effect of NFκB inhibitor and folacin in hyperhomocysteinemia-hyperlipidemia induced vascular dementia. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 38:207–215. PMID: 22510463.
Article
14. Vaniotis G, Glazkova I, Merlen C, Smith C, Villeneuve LR, Chatenet D, Therien M, Fournier A, Tadevosyan A, Trieu P, Nattel S, Hébert TE, Allen BG. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors. J Mol Cell Cardiol. 2013; 62:58–68. PMID: 23684854.
Article
15. Burnier M, Forni V. Endothelin receptor antagonists: a place in the management of essential hypertension? Nephrol Dial Transplant. 2012; 27:865–868. PMID: 22311858.
Article
16. Zhen P, Zhao Q, Hou D, Liu T, Jiang D, Duan J, Lu L, Wang W. Genistein attenuates vascular endothelial impairment in ovariectomized hyperhomocysteinemic rats. J Biomed Biotechnol. 2012; 2012:730462. PMID: 23226943.
Article
17. Norsidah KZ, Asmadi AY, Azizi A, Faizah O, Kamisah Y. Palm tocotrienol-rich fraction improves vascular proatherosclerotic changes in hyperhomocysteinemic rats. Evid Based Complement Alternat Med. 2013; 2013:976967. PMID: 23573162.
Article
18. Knobloch J, Feldmann M, Wahl C, Jungck D, Behr J, Stoelben E, Koch A. Endothelin receptor antagonists attenuate the inflammatory response of human pulmonary vascular smooth muscle cells to bacterial endotoxin. J Pharmacol Exp Ther. 2013; 346:290–299. PMID: 23720457.
Article
19. Lisk C, McCord J, Bose S, Sullivan T, Loomis Z, Nozik-Grayck E, Schroeder T, Hamilton K, Irwin DC. Nrf2 activation: a potential strategy for the prevention of acute mountain sickness. Free Radic Biol Med. 2013; 63:264–273. PMID: 23722164.
Article
20. Day RW, Brockmeyer DL, Feola GP. Safe treatment of pulmonary hypertension with bosentan in a patient with moyamoya disease and cerebral ischemia. J Child Neurol. 2010; 25:504–507. PMID: 19808994.
Article
21. Moldes O, Sobrino T, Blanco M, Agulla J, Barral D, Ramos-Cabrer P, Castillo J. Neuroprotection afforded by antagonists of endothelin-1 receptors in experimental stroke. Neuropharmacology. 2012; 63:1279–1285. PMID: 22975409.
Article
22. Song JN, Yan WT, An JY, Hao GS, Guo XY, Zhang M, Li Y, Li DD, Sun P. Potential contribution of SOCC to cerebral vasospasm after experimental subarachnoid hemorrhage in rats. Brain Res. 2013; 1517:93–103. PMID: 23542055.
Article
23. Palmer J, Love S. Endothelin receptor antagonists: potential in Alzheimer's disease. Pharmacol Res. 2011; 63:525–531. PMID: 21193044.
Article
24. Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pharmacol. 2012; 16:79–89. PMID: 22563252.
25. Kumar R, Jaggi AS, Singh N. Effects of erythropoietin on memory deficits and brain oxidative stress in the mouse models of dementia. Korean J Physiol Pharmacol. 2010; 14:345–352. PMID: 21165335.
Article
26. Kim SJ, Lee JH, Chung HS, Song JH, Ha J, Bae H. Neuroprotective Effects of AMP-Activated protein kinase on scopolamine induced memory impairment. Korean J Physiol Pharmacol. 2013; 17:331–338. PMID: 23946693.
Article
27. Dimitrova KR, DeGroot KW, Pacquing AM, Suyderhoud JP, Pirovic EA, Munro TJ, Wieneke JA, Myers AK, Kim YD. Estradiol prevents homocysteine-induced endothelial injury in male rats. Cardiovasc Res. 2002; 53:589–596. PMID: 11861029.
Article
28. Sastry KV, Moudgal RP, Mohan J, Tyagi JS, Rao GS. Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Anal Biochem. 2002; 306:79–82. PMID: 12069417.
Article
29. ELlman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7:88–95. PMID: 13726518.
Article
30. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95:351–358. PMID: 36810.
Article
31. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963; 61:882–888. PMID: 13967893.
32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193:265–275. PMID: 14907713.
Article
33. Gulati P, Muthuraman A, Jaggi AS, Singh N. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol. 2013; 386:255–264. PMID: 23229582.
Article
34. Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W, Li T, Wang YT. Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology. 2013; 64:65–73. PMID: 22732443.
Article
35. Hashemi Nosrat Abadi T, Vaghef L, Babri S, Mahmood-Alilo M, Beirami M. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats. Alcohol. 2013; 47:309–316. PMID: 23683528.
Article
36. Sudduth TL, Powell DK, Smith CD, Greenstein A, Wilcock DM. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J Cereb Blood Flow Metab. 2013; 33:708–715. PMID: 23361394.
Article
37. Tlili A, Jacobs F, de Koning L, Mohamed S, Bui LC, Dairou J, Belin N, Ducros V, Dubois T, Paul JL, Delabar JM, De Geest B, Janel N. Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice. Biochim Biophys Acta. 2013; 1832:718–728. PMID: 23429073.
Article
38. Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, Loscalzo J. Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol. 2012; 52:753–760. PMID: 22227328.
Article
39. Asif M, Soiza RL, McEvoy M, Mangoni AA. Asymmetric dimethylarginine: a possible link between vascular disease and dementia. Curr Alzheimer Res. 2013; 10:347–356. PMID: 23036019.
Article
40. Rodionov RN, Dayoub H, Lynch CM, Wilson KM, Stevens JW, Murry DJ, Kimoto M, Arning E, Bottiglieri T, Cooke JP, Baumbach GL, Faraci FM, Lentz SR. Overexpression of dimethylarginine dimethylaminohydrolase protects against cerebral vascular effects of hyperhomocysteinemia. Circ Res. 2010; 106:551–558. PMID: 20019334.
Article
41. Rhodehouse BC, Erickson MA, Banks WA, Bearden SE. Hyperhomocysteinemic mice show cognitive impairment without features of Alzheimer's disease phenotype. J Alzheimers Dis. 2013; 35:59–66. PMID: 23334704.
Article
42. Scherer EB, Loureiro SO, Vuaden FC, Schmitz F, Kolling J, Siebert C, Savio LE, Schweinberger BM, Bogo MR, Bonan CD, Wyse AT. Mild hyperhomocysteinemia reduces the activity and immunocontent, but does not alter the gene expression, of catalytic α subunits of cerebral Na+,K+-ATPase. Mol Cell Biochem. 2013; 378:91–97. PMID: 23467881.
43. Emeksiz HC, Serdaroglu A, Biberoglu G, Gulbahar O, Arhan E, Cansu A, Arga M, Hasanoglu A. Assessment of atherosclerosis risk due to the homocysteine-asymmetric dimethylarginine-nitric oxide cascade in children taking antiepileptic drugs. Seizure. 2013; 22:124–127. PMID: 23266348.
Article
44. Schaub C, Uebachs M, Beck H, Linnebank M. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Exp Brain Res. 2013; 225:527–534. PMID: 23307157.
Article
45. Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RC. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis. 2010; 19:813–827. PMID: 20157238.
Article
46. Potts LB, Ren Y, Lu G, Kuo E, Ngo E, Kuo L, Hein TW. Constriction of retinal arterioles to endothelin-1: requisite role of rho kinase independent of protein kinase C and L-type calcium channels. Invest Ophthalmol Vis Sci. 2012; 53:2904–2912. PMID: 22427601.
Article
47. Bae EH, Kim SW. Changes in endothelin receptor type B and neuronal nitric oxide synthase in puromycin aminonucleoside-induced nephrotic syndrome. Korean J Physiol Pharmacol. 2010; 14:223–228. PMID: 20827336.
Article
48. Ohkita M, Tawa M, Kitada K, Matsumura Y. Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci. 2012; 119:302–313. PMID: 22863667.
Article
49. Guo QH, Tian YL, Wang Z, Li AY, Ma ZH, Guo YJ, Weiss JW, Ji ES, Chu L. Endothelin receptors in augmented vasoconstrictor responses to endothelin-1 in chronic intermittent hypoxia. Clin Exp Pharmacol Physiol. 2013; 40:449–457. PMID: 23662699.
Article
50. Wang Z, Li AY, Guo QH, Zhang JP, An Q, Guo YJ, Chu L, Weiss JW, Ji ES. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats. PLoS One. 2013; 8:e58078. PMID: 23555567.
Article
51. de Andrade CR, Leite PF, Montezano AC, Casolari DA, Yogi A, Tostes RC, Haddad R, Eberlin MN, Laurindo FR, de Souza HP, Correa FM, de Oliveira AM. Increased endothelin-1 reactivity and endothelial dysfunction in carotid arteries from rats with hyperhomocysteinemia. Br J Pharmacol. 2009; 157:568–580. PMID: 19371338.
Article
52. Choi S, Na HY, Kim JA, Cho SE, Suh SH. Contradictory effects of superoxide and hydrogen peroxide on KCa3.1 in human endothelial cells. Korean J Physiol Pharmacol. 2013; 17:181–187. PMID: 23776393.
Article
53. Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Yang CM. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-d ependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal. 2013; 11:8. PMID: 23343326.
Article
54. Singh B, Sharma B, Jaggi AS, Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer's disease type: possible involvement of PPAR-γ agonistic property. J Renin Angiotensin Aldosterone Syst. 2013; 14:124–136. PMID: 23060470.
Article
55. Sharma B, Singh N. Defensive effect of natrium diethyldithiocarbamate trihydrate (NDDCT) and lisinopril in DOCA-salt hypertension-induced vascular dementia in rats. Psychopharmacology (Berl). 2012; 223:307–317. PMID: 22526544.
Article
56. Sharma B, Singh N. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, convalesce behavior and biochemistry of hypertension induced vascular dementia in rats. Pharmacol Biochem Behav. 2013; 103:821–830. PMID: 23201648.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr