J Adv Prosthodont.  2013 May;5(2):209-217. 10.4047/jap.2013.5.2.209.

Maxillary cement retained implant supported monolithic zirconia prosthesis in a full mouth rehabilitation: a clinical report

Affiliations
  • 1Department of Prosthdontics, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL, USA. rsadidz@uab.edu
  • 2University of Alabama at Birmingham, School of Dentistry, Birmingham, AL, USA.

Abstract

This clinical report presents the reconstruction of a maxillary arch with a cement retained implant supported fixed prosthesis using a monolithic zirconia generated by CAD/CAM system on eight osseointegrated implants. The prosthesis was copy milled from an interim prosthesis minimizing occlusal adjustments on the definitive prosthesis at the time of delivery. Monolithic zirconia provides high esthetics and reduces the number of metal alloys used in the oral cavity.

Keyword

Monolithic zirconia; Cement retained prosthesis; Implant supported prosthesis; CAD/CAM; Milled zirconia

MeSH Terms

Alloys
Coat Protein Complex I
Esthetics
Mouth
Occlusal Adjustment
Prostheses and Implants
Zirconium
Alloys
Coat Protein Complex I
Zirconium

Figure

  • Fig. 1 Preoperative panoramic radiograph.

  • Fig. 2 A: Preoperative frontal view at maximum intercuspal position, B: Preoperative frontal view at protrusive movement, C: Preoperative maxillary occlusal view, D: Preoperative mandibular occlusal view.

  • Fig. 3 Diagnostic wax-up.

  • Fig. 4 A: Implant-tooth retained interim prosthesis, two weeks after implant placement #6, 11, B: mplant retained interim prosthesis, two weeks after extraction of teeth #9 and 10.

  • Fig. 5 A: Maxillary interim prosthesis cast against mandibular definitive prosthesis cast, B: Maxillary definitive cast cross mounted on mandibular cast, C: Solid resin matrix on definitive cast, D: Zirconia and gold platted titanium custom abutments on definitive cast.

  • Fig. 6 A: Superimposed scan on definitive cast, B: Milled interim prosthesis before modification, C: Milled interim prosthesis after chair side modifications, D: Replicate of intaglio surface of the milled interim prosthesis on the definitive cast.

  • Fig. 7 A: Postoperative maxillary occusal view, B: Postoperative mandibular occlusal view, C: Postoperative left lateral view, D: Postoperative right lateral view, E: Facial frontal smile.

  • Fig. 8 Postoperative panoramic radiograph.


Reference

1. Bergendal B, Palmqvist S. Laser-welded titanium frameworks for implant-supported fixed prostheses: a 5-year report. Int J Oral Maxillofac Implants. 1999; 14:69–71.
2. Bozini T, Petridis H, Garefis K, Garefis P. A meta-analysis of prosthodontic complication rates of implant-supported fixed dental prostheses in edentulous patients after an observation period of at least 5 years. Int J Oral Maxillofac Implants. 2011; 26:304–318.
3. Larsson C, Vult von Steyern P, Nilner K. A prospective study of implant-supported full-arch yttria-stabilized tetragonal zirconia polycrystal mandibular fixed dental prostheses: three-year results. Int J Prosthodont. 2010; 23:364–369.
4. Papaspyridakos P, Lal K. Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: a clinical report. J Prosthet Dent. 2008; 100:165–172.
5. Hassel AJ, Shahin R, Kreuter A, Rammelsberg P. Rehabilitation of an edentulous mandible with an implant-supported fixed prosthesis using an all-ceramic framework: a case report. Quintessence Int. 2008; 39:421–426.
6. Ghazal M, Hedderich J, Kern M. Wear of feldspathic ceramic, nano-filled composite resin and acrylic resin artificial teeth when opposed to different antagonists. Eur J Oral Sci. 2008; 116:585–592.
7. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Brånemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants. 1991; 6:270–276.
8. Suzuki S. In vitro wear of nano-composite denture teeth. J Prosthodont. 2004; 13:238–243.
9. Coachman C, Salama M, Garber D, Calamita M, Salama H, Cabral G. Prosthetic gingival reconstruction in fixed partial restorations. Part 3: laboratory procedures and maintenance. Int J Periodontics Restorative Dent. 2010; 30:19–29.
10. Bencharit S, Schardt-Sacco D, Border MB, Barbaro CP. Full mouth rehabilitation with implant-supported prostheses for severe periodontitis: a case report. Open Dent J. 2010; 4:165–171.
11. Hagiwara Y, Nakajima K, Tsuge T, McGlumphy EA. The use of customized implant frameworks with gingiva-colored composite resin to restore deficient gingival architecture. J Prosthet Dent. 2007; 97:112–117.
12. Alani A, Maglad A, Nohl F. The prosthetic management of gingival aesthetics. Br Dent J. 2011; 210:63–69.
13. Linkevicius T, Vladimirovas E, Grybauskas S, Puisys A, Rutkunas V. Veneer fracture in implant-supported metal-ceramic restorations. Part I: Overall success rate and impact of occlusal guidance. Stomatologija. 2008; 10:133–139.
14. Roberts DH. The failure of retainers in bridge prostheses. An analysis of 2,000 retainers. Br Dent J. 1970; 128:117–124.
15. Jacobi R, Shillingburg HT Jr, Duncanson MG Jr. Effect of abutment mobility, site, and angle of impact on retention of fixed partial dentures. J Prosthet Dent. 1985; 54:178–183.
16. Reuter JE, Brose MO. Failures in full crown retained dental bridges. Br Dent J. 1984; 157:61–63.
17. Llobell A, Nicholls JI, Kois JC, Daly CH. Fatigue life of porcelain repair systems. Int J Prosthodont. 1992; 5:205–213.
18. Ehrenkranz H, Langer B, Marotta L. Complete-arch maxillary rehabilitation using a custom-designed and manufactured titanium framework: a clinical report. J Prosthet Dent. 2008; 99:8–13.
19. Stefan H, Michael B, Enrico S, Markus BB, Manfred W. The Application of Zirconium Oxide Frameworks for Implant Superstructures. Quintessence Dent Tech. 2006; 29:103–112.
20. Ohlmann B, Marienburg K, Gabbert O, Hassel A, Gilde H, Rammelsberg P. Fracture-load values of all-ceramic cantilevered FPDs with different framework designs. Int J Prosthodont. 2009; 22:49–52.
21. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil. 2010; 37:641–652.
22. Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont. 2010; 23:493–502.
23. Angle EH. Classification of malocclusion. Dental Cosmos. 1899; 41:248–264.
24. Kaplan P. Drifting, tipping, supraeruption, and segmental alveolar bone growth. J Prosthet Dent. 1985; 54:280–283.
25. Del Castillo R, Ercoli C, Delgado JC, Alcaraz J. An alternative multiple pontic design for a fixed implant-supported prosthesis. J Prosthet Dent. 2011; 106:198–203.
26. Edelhoff D, Spiekermann H, Yildirim M. A review of esthetic pontic design options. Quintessence Int. 2002; 33:736–746.
27. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999; 20:1–25.
28. Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater. 2007; 23:106–114.
29. Lüthy H, Filser F, Loeffel O, Schumacher M, Gauckler LJ, Hammerle CH. Strength and reliability of four-unit all-ceramic posterior bridges. Dent Mater. 2005; 21:930–937.
30. Ronald LS, John MP. Evolve resources for Craig's restorative dental materials. 12th ed. Mosby;2006.
31. Quirynen M, Bollen CM, Willems G, van Steenberghe D. Comparison of surface characteristics of six commercially pure titanium abutments. Int J Oral Maxillofac Implants. 1994; 9:71–76.
32. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006; 17:68–81.
33. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997; 13:258–269.
34. Sardin S, Morrier JJ, Benay G, Barsotti O. In vitro streptococcal adherence on prosthetic and implant materials. Interactions with physicochemical surface properties. J Oral Rehabil. 2004; 31:140–148.
35. Johannsen G, Redmalm G, Rydén H. Surface changes on dental materials. II. The influence of two different dentifrices on surface roughness measured by laser reflexion and profilometer techniques. Swed Dent J. 1992; 16:13–20.
36. Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J. The effect of surface roughening of polymers on measured contact angles of liquids. Colloid Surf. 1984; 9:319–331.
37. Heath JR, Wilson HJ. Surface roughness of restorations. Br Dent J. 1976; 140:131–137.
38. Rosenstiel SF, Baiker MA, Johnston WM. Comparison of glazed and polished dental porcelain. Int J Prosthodont. 1989; 2:524–529.
39. Ward MT, Tate WH, Powers JM. Surface roughness of opalescent porcelains after polishing. Oper Dent. 1995; 20:106–110.
40. Al-Wahadni A. An in vitro investigation into the surface roughness of 2 glazed, unglazed, and refinished ceramic materials. Quintessence Int. 2006; 37:311–317.
41. Klausner LH, Cartwright CB, Charbeneau GT. Polished versus autoglazed porcelain surfaces. J Prosthet Dent. 1982; 47:157–162.
42. Sasahara RM, Ribeiro Fda C, Cesar PF, Yoshimura HN. Influence of the finishing technique on surface roughness of dental porcelains with different microstructures. Oper Dent. 2006; 31:577–583.
43. Rosentritt M, Preis V, Behr M, Hahnel S, Handel G, Kolbeck C. Two-body wear of dental porcelain and substructure oxide ceramics. Clin Oral Investig. 2012; 16:935–943.
44. Vigolo P, Motterle M. An in vitro evaluation of zirconia surface roughness caused by different scaling methods. J Prosthet Dent. 2010; 103:283–287.
45. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants. 2002; 17:793–798.
46. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004; 75:292–296.
47. Jung YS, Lee JW, Choi YJ, Ahn JS, Shin SW, Huh JB. A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J Adv Prosthodont. 2010; 2:111–115.
48. Preis V, Behr M, Handel G, Schneider-Feyrer S, Hahnel S, Rosentritt M. Wear performance of dental ceramics after grinding and polishing treatments. J Mech Behav Biomed Mater. 2012; 10:13–22.
49. Preis V, Behr M, Kolbeck C, Hahnel S, Handel G, Rosentritt M. Wear performance of substructure ceramics and veneering porcelains. Dent Mater. 2011; 27:796–804.
50. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008; 24:299–307.
Full Text Links
  • JAP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr