Hanyang Med Rev.  2014 Aug;34(3):130-136. 10.7599/hmr.2014.34.3.130.

Taste Sensation in Drosophila melanoganster

Affiliations
  • 1Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Korea. ylee@kookmin.ac.kr

Abstract

Animals find nutritious foods to survive, while avoiding aversive and toxic chemicals through the chemosensory faculties of olfaction and taste. The olfaction is comparatively well characterized, but the studies of taste are only recently developing since after 2000. Genetic, immunohistochemistry, and electrophysiological studies with knock-out transgenic mice opened up the taste field in mammals. Taste in insects has been only recently been studied after mammalian taste receptors were identified. Flies also discriminate the differences of sweet, salty and sour food, while being able to detect and reject potential foods contaminated with toxins or detrimental chemicals. These discriminatory abilities indicate that flies house basic taste receptors in their taste organs like humans. For the last decade, the sweet and bitter gustatory receptors in Drosophila have been characterized. In this review, we compare the taste anatomy between humans and insects. We also introduce five canonical taste sensations in Drosophila. In addition, we introduce new taste repertoires, that fruit flies can sense water and fatty acids as well as the carbonation buffer in beverage. These studies on simple model organisms will open up a new potential for scientists to further investigate these characteristics in vertebrates.

Keyword

Taste; Drosophila; Gustatory Receptors; Behaviour; Electrophysiology

MeSH Terms

Animals
Beverages
Carbon
Diptera
Drosophila*
Electrophysiology
Fatty Acids
Fruit
Humans
Immunohistochemistry
Insects
Mammals
Mice
Mice, Transgenic
Sensation*
Smell
Vertebrates
Carbon
Fatty Acids

Reference

1. Chemoreception. In : Chapman RP, editor. The Insects: structure and function. 5th ed. New York: Cambridge University Press;1998. p. 771–792.
2. Turlings TC, Loughrin JH, McCall PJ, Röse US, Lewis WJ, Tumlinson JH. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A. 1995; 92:4169–4174.
Article
3. Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a rewiew. Cell Tissue Res. 1994; 275:3–26.
Article
4. Hiroi M, Marion-Poll F, Tanimura T. Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoolog Sci. 2002; 19:1009–1018.
Article
5. Wang Z, Singhvi A, Kong P, Scott K. Taste representations in the Drosophila brain. Cell. 2004; 117:981–991.
Article
6. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006; 444:288–294.
Article
7. Kent LB, Robertson H. Evolution of the sugar receptors in insects. BMC Evol Biol. 2009; 9:41.
Article
8. Dahanukar A, Lei YT, Kwon JY, Carlson JR. Two Gr genes underlie sugar reception in Drosophila. Neuron. 2007; 56:503–516.
Article
9. Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci. 2001; 4:1182–1186.
Article
10. Jiao Y, Moon SJ, Montell C. A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci U S A. 2007; 104:14110–14115.
Article
11. Jiao Y, Moon SJ, Wang X, Ren Q, Montell C. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol. 2008; 18:1797–1801.
Article
12. Freeman EG, Wisotsky Z, Dahanukar A. Detection of sweet tastants by a conserved group of insect gustatory receptors. Proc Natl Acad Sci U S A. 2014; 111:1598–1603.
Article
13. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature. 2007; 445:86–90.
Article
14. Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature. 2004; 431:854–859.
Article
15. Miyamoto T, Slone J, Song X, Amrein H. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell. 2012; 151:1113–1125.
Article
16. Sato K, Tanaka K, Touhara K. Sugar-regulated cation channel formed by an insect gustatory receptor. Proc Natl Acad Sci U S A. 2011; 108:11680–11685.
Article
17. Kwon JY, Dahanukar A, Weiss LA, Carlson JR. Molecular and cellular organization of the taste system in the Drosophila larva. J Neurosci. 2011; 31:15300–15309.
Article
18. Mishra D, Miyamoto T, Rezenom YH, Broussard A, Yavuz A, Slone J, et al. The molecular basis of sugar sensing in Drosophila larvae. Curr Biol. 2013; 23:1466–1471.
Article
19. Dus M, Min S, Keene AC, Lee GY, Suh GSB. Taste-independent detection of the caloric content of sugar in Drosophila. Proc Natl Acad Sci U S A. 2011; 108:11644–11649.
Article
20. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, et al. An amino-acid taste receptor. Nature. 2002; 416:199–202.
Article
21. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, et al. The receptors for mammalian sweet and umami taste. Cell. 2003; 115:255–266.
Article
22. Toshima N, Tanimura T. Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster. J Exp Biol. 2012; 215:2827–2832.
Article
23. Lee Y, Kang MJ, Shim J, Cheong CU, Moon SJ, Montell C. Gustatory receptors required for avoiding the insecticide L-canavanine. J Neurosci. 2012; 32:1429–1435.
Article
24. Amrein H, Thorne N. Gustatory perception and behavior in Drosophila melanogaster. Curr Biol. 2005; 15:R673–R684.
Article
25. Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The molecular and cellular basis of bitter taste in Drosophila. Neuron. 2011; 69:258–272.
Article
26. Lee Y, Kim SH, Montell C. Avoiding DEET through insect gustatory receptors. Neuron. 2010; 67:555–561.
Article
27. Lee Y, Moon SJ, Montell C. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci U S A. 2009; 106:4495–4500.
Article
28. Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C. A taste receptor required for the caffeine response in vivo. Curr Biol. 2006; 16:1812–1817.
Article
29. Moon SJ, Lee Y, Jiao Y, Montell C. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol. 2009; 19:1623–1627.
Article
30. Kain P, Boyle SM, Tharadra SK, Guda T, Pham C, Dahanukar A, et al. Odour receptors and neurons for DEET and new insect repellents. Nature. 2013; 502:507–512.
Article
31. Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature. 2011; 478:511–514.
Article
32. Zhang YV, Raghuwanshi RP, Shen WL, Montell C. Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat Neurosci. 2013; 16:1468–1476.
Article
33. Al-Anzi B, Tracey WD Jr, Benzer S. Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1. Curr Biol. 2006; 16:1034–1040.
Article
34. Kim SH, Lee Y, Akitake B, Woodward OM, Guggino WB, Montell C. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc Natl Acad Sci U S A. 2010; 107:8440–8445.
Article
35. Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature. 2010; 464:597–600.
Article
36. Wu TS, Damu AG, Su CR, Kuo PC. Chemical constituents and pharmacology of Aristolochi species. Stud Nat Prod Chem. 2005; 32:855–1018.
37. Cameron P, Hiroi M, Ngai J, Scott K. The molecular basis for water taste in Drosophila. Nature. 2010; 465:91–95.
Article
38. Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, et al. Acid sensing by the Drosophila olfactory system. Nature. 2010; 468:691–695.
Article
39. Semmelhack JL, Wang JW. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature. 2009; 459:218–223.
Article
40. Charlu S, Wisotsky Z, Medina A, Dahanukar A. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat Commun. 2013; 4:2042.
Article
41. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, et al. The cells and peripheral representation of sodium taste in mice. Nature. 2010; 464:297–301.
Article
42. Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, et al. Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron. 2003; 39:133–146.
Article
43. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009; 136:149–162.
Article
44. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010; 6:e1001064.
Article
45. Zhang YV, Ni J, Montell C. The molecular basis for attractive salt-taste coding in Drosophila. Science. 2013; 340:1334–1338.
Article
46. Inoshita T, Tanimura T. Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc Natl Acad Sci U S A. 2006; 103:1094–1099.
Article
47. Chen Z, Wang Q, Wang Z. The amiloride-sensitive epithelial Na+ channel PPK28 is essential for drosophila gustatory water reception. J Neurosci. 2010; 30:6247–6252.
Article
48. Fischler W, Kong P, Marella S, Scott K. The detection of carbonation by the Drosophila gustatory system. Nature. 2007; 448:1054–1057.
Article
49. Fougeron AS, Farine JP, Flaven-Pouchon J, Everaerts C, Ferveur JF. Fatty-acid preference changes during development in Drosophila melanogaster. PLoS One. 2011; 6:e26899.
Article
50. Masek P, Keene AC. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 2013; 9:e1003710.
Article
51. Ueno K, Kohatsu S, Clay C, Forte M, Isono K, Kidokoro Y. Gsalpha is involved in sugar perception in Drosophila melanogaster. J Neurosci. 2006; 26:6143–6152.
52. Ueno K, Kidokoro Y. Adenylyl cyclase encoded by AC78C participates in sugar perception in Drosophila melanogaster. Eur J Neurosci. 2008; 28:1956–1966.
Article
53. Vermehren-Schmaedick A, Scudder C, Timmermans W, Morton DB. Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011; 197:717–727.
Article
54. Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell. 2012; 149:1140–1151.
Article
55. Toda H, Zhao X, Dickson BJ. The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell Rep. 2012; 1:599–607.
Article
56. Bray S, Amrein H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron. 2003; 39:1019–1029.
Article
57. Miyamoto T, Amrein H. Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci. 2008; 11:874–876.
Article
58. Park JH, Kwon JY. A systematic analysis of Drosophila gustatory receptor gene expression in abdominal neurons which project to the central nervous system. Mol Cells. 2011; 32:375–381.
Article
Full Text Links
  • HMR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr