Endocrinol Metab.  2015 Jun;30(2):185-194. 10.3803/EnM.2015.30.2.185.

Comparison of Serum Adipocytokine Levels according to Metabolic Health and Obesity Status

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea. hongsiri@hanmail.net
  • 2Department of Neurology, Soonchunhyang University College of Medicine, Cheonan, Korea.

Abstract

BACKGROUND
Metabolic health is an emerging concept that is highly correlated with various metabolic complications, and adipocytokines have been causally linked to a wide range of metabolic diseases. Thus, this study compared serum adipocytokine levels according to metabolic health and obesity status.
METHODS
Four hundred and fifty-six nondiabetic subjects (mean age, 40.5 years) were categorized into four groups according to metabolic health and obesity status: metabolically healthy nonobese (MHNO), metabolically healthy obese (MHO), metabolically unhealthy nonobese (MUHNO), and metabolically unhealthy obese (MUHO). Being metabolically healthy was defined as the presence of fewer than two of the following five metabolic abnormalities: high blood pressure, high fasting blood glucose, high triglyceride, low high density lipoprotein cholesterol, and being in the highest decile of the homeostatic model assessment of insulin resistance index. Obesity status was assessed using body mass index (BMI), with obesity defined as a BMI higher than 25 kg/m2. Levels of serum interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and adipocyte fatty acid binding protein (A-FABP) were also evaluated.
RESULTS
Of the 456 subjects, 247 (54.2%) were in the MHNO group, 66 (14.5%) were in the MHO group, 66 (14.5%) were in the MUHNO group, and 77 (16.9%) were in the MUHO group. There were no significant differences in IL-6 or MCP-1 levels among the groups, but levels of TNF-alpha and A-FABP were significantly higher in the MUHNO group compared to the MHNO group.
CONCLUSION
High TNF-alpha and A-FABP levels are significantly associated with metabolically unhealthiness in nonobese Korean individuals.

Keyword

Obesity; Metabolic health; Adipocytokine

MeSH Terms

Adipocytes
Adipokines
Blood Glucose
Body Mass Index
Carrier Proteins
Chemokine CCL2
Cholesterol, HDL
Fasting
Hypertension
Insulin Resistance
Interleukin-6
Metabolic Diseases
Obesity*
Triglycerides
Tumor Necrosis Factor-alpha
Adipokines
Blood Glucose
Carrier Proteins
Chemokine CCL2
Cholesterol, HDL
Interleukin-6
Tumor Necrosis Factor-alpha

Figure

  • Fig. 1 Selection of the participants.

  • Fig. 2 Comparison of mean (A) tumor necrosis factor α (TNF-α) and (B) adipocyte fatty acid binding protein (A-FABP) levels according to four groups divided by metabolic health and obesity. MHNO, metabolically healthy nonobese; MHO, metabolically healthy obese; MUHNO, metabolically unhealthy nonobese; MUHO, metabolically unhealthy obese. a,bDifferent letters denote significant differences between the designated groups in post hoc analyses. Otherwise, groups showed no significant differences between each groups with post hoc analyses.


Cited by  1 articles

Being Metabolically Healthy, the Most Responsible Factor for Vascular Health
Eun-Jung Rhee
Diabetes Metab J. 2018;42(1):19-25.    doi: 10.4093/dmj.2018.42.1.19.


Reference

1. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008; 32:1431–1437.
2. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003; 289:76–79.
3. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006; 444:875–880.
4. Calori G, Lattuada G, Piemonti L, Garancini MP, Ragogna F, Villa M, Mannino S, Crosignani P, Bosi E, Luzi L, Ruotolo G, Perseghin G. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care. 2011; 34:210–215.
5. Ortega FB, Lee DC, Katzmarzyk PT, Ruiz JR, Sui X, Church TS, Blair SN. The intriguing metabolically healthy but obese phenotype: cardiovascular prognosis and role of fitness. Eur Heart J. 2013; 34:389–397.
6. Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012; 97:2482–2488.
7. Succurro E, Marini MA, Frontoni S, Hribal ML, Andreozzi F, Lauro R, Perticone F, Sesti G. Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals. Obesity (Silver Spring). 2008; 16:1881–1886.
8. Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud'homme D, Rabasa-Lhoret R. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005; 90:4145–4150.
9. Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, Stumvoll M, Bluher M. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010; 299:E506–E515.
10. Messier V, Karelis AD, Robillard ME, Bellefeuille P, Brochu M, Lavoie JM, Rabasa-Lhoret R. Metabolically healthy but obese individuals: relationship with hepatic enzymes. Metabolism. 2010; 59:20–24.
11. Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol. 2014; 220:T47–T59.
12. Bluher M. Are there still healthy obese patients? Curr Opin Endocrinol Diabetes Obes. 2012; 19:341–346.
13. Aguilar-Salinas CA, Garcia EG, Robles L, Riano D, Ruiz-Gomez DG, Garcia-Ulloa AC, Melgarejo MA, Zamora M, Guillen-Pineda LE, Mehta R, Canizales-Quinteros S, Tusie Luna MT, Gomez-Perez FJ. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008; 93:4075–4079.
14. Rhee EJ, Seo MH, Jeon WS, Won HK, Choi JH, Park SE, Park CY, Kwag HJ, Oh KW, Park SW, Kim SW, Lee WY. The association of baseline adipocytokine levels with glycemic progression in nondiabetic Korean adults in 4 years of follow-up. Diabetes Res Clin Pract. 2012; 98:501–507.
15. National Glycohemoglobin Standardization Program. List of NGSP certified methods [Internet]. NGSP;c2010. cited 2012 Nov 26. Available from: http://www.ngsp.org/docs/methods.pdf.
16. Schwartz KL, Monsur JC, Bartoces MG, West PA, Neale AV. Correlation of same-visit HbA1c test with laboratory-based measurements: a MetroNet study. BMC Fam Pract. 2005; 6:28.
17. American Diabetes Association. Standards of medical care in diabetes: 2014. Diabetes Care. 2014; 37:Suppl 1. S14–S80.
18. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28:412–419.
19. World Health Organization Western Pacific Region. The Asia-Pacific perspective: redefining obesity and its treatment. Geneva: WHO;2000.
20. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, Sowers MR. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008; 168:1617–1624.
21. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr. International Diabetes Federation Task Force on Epidemiology and Prevention. Hational Heart, Lung, and Blood Institute. American Heart Association. World Heart Federation. International Atherosclerosis Society. International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120:1640–1645.
22. Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond). 2011; 35:971–981.
23. Appleton SL, Seaborn CJ, Visvanathan R, Hill CL, Gill TK, Taylor AW, Adams RJ. North West Adelaide Health Study Team. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study. Diabetes Care. 2013; 36:2388–2394.
24. Rhee EJ, Lee MK, Kim JD, Jeon WS, Bae JC, Park SE, Park CY, Oh KW, Park SW, Lee WY. Metabolic health is a more important determinant for diabetes development than simple obesity: A 4-year retrospective longitudinal study. PLoS One. 2014; 9:e98369.
25. Rhee EJ, Seo MH, Kim JD, Jeon WS, Park SE, Park CY, Oh KW, Park SW, Lee WY. Metabolic health is more closely associated with coronary artery calcification than obesity. PLoS One. 2013; 8:e74564.
26. Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, Balletshofer B, Machicao F, Fritsche A, Haring HU. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008; 168:1609–1616.
27. Brochu M, Tchernof A, Dionne IJ, Sites CK, Eltabbakh GH, Sims EA, Poehlman ET. What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J Clin Endocrinol Metab. 2001; 86:1020–1025.
28. Marini MA, Succurro E, Frontoni S, Hribal ML, Andreozzi F, Lauro R, Perticone F, Sesti G. Metabolically healthy but obese women have an intermediate cardiovascular risk profile between healthy nonobese women and obese insulin-resistant women. Diabetes Care. 2007; 30:2145–2147.
29. Lynch LA, O'Connell JM, Kwasnik AK, Cawood TJ, O'Farrelly C, O'Shea DB. Are natural killer cells protecting the metabolically healthy obese patient? Obesity (Silver Spring). 2009; 17:601–605.
30. Jung CH, Kim BY, Mok JO, Kang SK, Kim CH. Association between serum adipocytokine levels and microangiopathies in patients with type 2 diabetes mellitus. J Diabetes Investig. 2014; 5:333–339.
31. Shimabukuro M, Hirata Y, Tabata M, Dagvasumberel M, Sato H, Kurobe H, Fukuda D, Soeki T, Kitagawa T, Takanashi S, Sata M. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2013; 33:1077–1084.
32. Lee KK, Suh YS, Yum KS. The effect of visceral fat area and adipocytokines on acute myocardial infarction: a case-control study in adult Korean population. Korean J Obes. 2012; 21:57–64.
33. Seo YY, Cho YK, Bae JC, Seo MH, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Tumor necrosis factor-alpha as a predictor for the development of nonalcoholic fatty liver disease: a 4-year follow-up study. Endocrinol Metab (Seoul). 2013; 28:41–45.
34. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259:87–91.
35. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997; 389:610–614.
36. Hivert MF, Sullivan LM, Fox CS, Nathan DM, D'Agostino RB Sr, Wilson PW, Meigs JB. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab. 2008; 93:3165–3172.
37. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005; 96:939–949.
38. Tarkun I, Cetinarslan B, Turemen E, Canturk Z, Biyikli M. Association between circulating tumor necrosis factor-alpha, interleukin-6, and insulin resistance in normal-weight women with polycystic ovary syndrome. Metab Syndr Relat Disord. 2006; 4:122–128.
39. Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet. 2006; 47:39–48.
40. Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G, Malone H, Krishnan B, Minokoshi Y, Kahn BB, Parker RA, Hotamisligil GS. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab. 2005; 1:107–119.
41. Karakas SE, Almario RU, Kim K. Serum fatty acid binding protein 4, free fatty acids, and metabolic risk markers. Metabolism. 2009; 58:1002–1007.
42. Bagheri R, Qasim AN, Mehta NN, Terembula K, Kapoor S, Braunstein S, Schutta M, Iqbal N, Lehrke M, Reilly MP. Relation of plasma fatty acid binding proteins 4 and 5 with the metabolic syndrome, inflammation and coronary calcium in patients with type-2 diabetes mellitus. Am J Cardiol. 2010; 106:1118–1123.
43. Krusinova E, Pelikanova T. Fatty acid binding proteins in adipose tissue: a promising link between metabolic syndrome and atherosclerosis? Diabetes Res Clin Pract. 2008; 82:Suppl 2. S127–S134.
44. Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam Horm. 2009; 80:613–633.
45. Chan KH, Brennan K, You NC, Lu X, Song Y, Hsu YH, Chaudhuri G, Nathan L, Tinker L, Liu S. Common variations in the genes encoding C-reactive protein, tumor necrosis factor-alpha, and interleukin-6, and the risk of clinical diabetes in the Women's Health Initiative Observational Study. Clin Chem. 2011; 57:317–325.
46. Suzuki T, Imai J, Yamada T, Ishigaki Y, Kaneko K, Uno K, Hasegawa Y, Ishihara H, Oka Y, Katagiri H. Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: potential involvement of the PLC-IP3-dependent pathway. Diabetes. 2011; 60:537–547.
47. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002; 16:1335–1347.
48. Al-Khalili L, Bouzakri K, Glund S, Lonnqvist F, Koistinen HA, Krook A. Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol. 2006; 20:3364–3375.
49. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003; 100:7265–7270.
50. Yu R, Kim CS, Kawada T, Kwon TW, Lim TH, Kim YW, Kwon BS. Involvement of leukotactin-1, a novel CC chemokine, in human atherosclerosis. Atherosclerosis. 2004; 174:35–42.
51. Murdolo G, Nowotny B, Celi F, Donati M, Bini V, Papi F, Gornitzka G, Castellani S, Roden M, Falorni A, Herder C, Falorni A. Inflammatory adipokines, high molecular weight adiponectin, and insulin resistance: a population-based survey in prepubertal schoolchildren. PLoS One. 2011; 6:e17264.
52. Zhang Y, Zhang J, Tian C, Narenqimuge , Deng Y, Zhao Y, Fan H, Huang J. The -2518A/G polymorphism in the monocyte chemoattractant protein-1 (MCP-1) gene and diabetes risk: a meta-analysis. Diabetes Res Clin Pract. 2011; 94:e89–e92.
53. Hinnouho GM, Czernichow S, Dugravot A, Batty GD, Kivimaki M, Singh-Manoux A. Metabolically healthy obesity and risk of mortality: does the definition of metabolic health matter? Diabetes Care. 2013; 36:2294–2300.
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr