Korean J Orthod.  2002 Apr;32(2):129-142.

Effects of caffeine and calcium on the activities of the mouse osteoblastic cells

Affiliations
  • 1Department of Dentistry, Ilsan paik hospital, Inje University, Korea. bhj@ilsanpaik.ac.kr
  • 2Department of Orthodontics, Department of Dentistry, College of Medicine, Ewha Womans University, Korea.

Abstract

The purpose of this study was to evaluate the effects of caffeine and calcium on the activities of the osteoblastic cell from mouse calvaria. The author cultured osteoblastic cells obtained from the mouse calvaria and were divided into three groups: the caffeine-treated, the calcium-treated and the combine-treated group. In caffeine-treated group, the cell toxicity was measured by MTT assay at 1, 2 and 4 days after treatment of caffeine. In all groups, the densities of the mineralized bone nodules were measured by imaging analyzer after Von Kossa staining. The alkaline phosphotase (ALP) activities were measured at 2, 7, 14, 21 and 28 days and the interleukin-1beta activities at 48 hours after treatment of caffeine and calcium. The measurements were statistically executed with ANOVA test and the results were as follows. 1. The cellular toxicity of the caffeine increased with the concentration of caffeine during the incubation period. 2. The maximum densities of mineralization were observed at 0.2 mM caffeine-treated group, 1.2 mM calcium-treated group, 0.1 mM caffeine and 1.8 mM calcium-treated group. 3. The activities of ALP were peaked at 14 days at calcium-treated group as no-treated. But, the activities of ALP increased with concentrations of caffeine at caffeine-treated group. At combine-treated group, the act of ALP were peaked at 24 days at 1.2 mM, 1.8 mM calcium-treated group, But decreased at 2.5 mM calcium-treated group. 4. The activites of the IL-1beta were increased significantly at 0.2 mM caffeine-treated group, 1.8 mM calcium-treated group and 0.1 mM caffeine and 1.8 mM calcium-treated group. But, they were decreased at all groups of high concentration.

Keyword

Caffeine; Calcium; Osteoblast; ALP; Interleukin-1beta

MeSH Terms

Animals
Caffeine*
Calcium*
Interleukin-1beta
Mice*
Osteoblasts*
Skull
Caffeine
Calcium
Interleukin-1beta
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr