Korean J Leg Med.  2012 May;36(1):1-14. 10.7580/KoreanJLegMed.2012.36.1.1.

Postmortem Biochemistry (I) : Cardiac Markers

Affiliations
  • 1Department of Forensic Medicine and the Research Institute of Forensic Science, Chonnam National University Medical School, Gwang-Ju, Korea. jtpark@jnu.ac.kr
  • 2Chonnam National University Law School, Gwang-Ju, Korea.
  • 3Korea Basic Science Institute, Korea.

Abstract

In cases of atherosclerotic occlusion of coronary artery, is it appropriate to conclude that myocardial infarction is the true cause of death? More sensitive and specific diagnostic methods for the postmortem diagnosis of myocardial infarction are sometimes necessary because macroscopic or microscopic changes associated with early-phase acute myocardial injuries or myocardial infarct are sometimes absent in sudden cardiac death. Postmortem biochemical assessment of cardiac markers may help to evaluate the pathological cardiac status in sudden unexpected death without obvious cause. However, forensic pathologists are generally interested only in the macroscopic and microscopic findings for postmortem diagnosis of myocardial diseases and hesitate to use postmortem biochemical data because of the risk of postmortem changes. There are several clinically useful cardiac markers antemortem cardiac events such as myocardial injuries, infarct, or heart failure and postmortem data on cardiac markers in autopsy cases of sudden death have been reported. This review of postmortem data on cardiac markers in blood, other body fluids, and myocardial tissue will serve to introduce the recent international research trends and provide a foundation for a new field in postmortem biochemistry.

Keyword

postmortem biochemistry; cardiac markers; sudden death

MeSH Terms

Autopsy
Biochemistry
Body Fluids
Cardiomyopathies
Coronary Vessels
Death, Sudden
Heart Failure
Myocardial Infarction

Reference

1. Luna A. Is postmortem biochemistry really useful? Why is it not widely used in forensic pathology? Leg Med (Tokyo). 2009. 11:S27–S30.
2. Madea B. Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci Int. 2005. 151:139–149.
3. Maeda H. Pathophysiochemistry of acute death: an approach to evidence based assessment in forensic pathology. Nihon Hoigaku Zasshi. 2004. 58:121–129.
4. Maeda H, Zhu BL, Ishikawa T, Quan L, Michiue T. Significance of postmortem biochemistry in determining the cause of death. Leg Med (Tokyo). 2009. 11:S46–S49.
5. Maeda H, Zhu BL, Ishikawa T, Michiue T. Forensic molecular pathology of violent deaths. Forensic Sci Int. 2010. 203:83–92.
6. Knight B. Forensic pathology. 1991. 4th ed. London: Edward Arnold;444–472.
7. Zhu BL, Ishikawa T, Michiue T, et al. Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 1: Analysis with special regard to traumatic causes of death. Leg Med (Tokyo). 2006. 8:86–93.
8. Davies MJ. The investigation of sudden cardiac death. Histopathology. 1999. 34:93–98.
9. Schaper J, Froede R, Hein St, et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation. 1991. 83:504–514.
10. Missov E, Calzolari C, Pau B. Circulating cardiac troponin I in severe congestive heart failure. Circulation. 1997. 96:2953–2958.
11. Setsuta K, Seino Y, Takahashi N, et al. Clinical significance of elevated levels of cardiac troponin T in patients with chronic heart failure. Am J Cardiol. 1999. 84:608–611.
12. Del Carlo CH, O'onnor CM. Cardiac troponins in congestive heart failure. Am Heart J. 1999. 138:646–653.
13. Ishino M, Takeishi Y, Niizeki T, et al. Risk Stratification of Chronic Heart Failure Patients by Multiple Biomarkers-Implications of BNP, H-FABP, and PTX3-. Circ J. 2008. 72:1800–1805.
14. World Health Organization. Arterial hypertension and ischemic heart disease. WHO Tech Report. 1962. 231:18.
15. Kagen L, Scheidt S, Roberts L, Porter A, Paul H. Myoglobinemia following acute myocardial infarction. Am J Med. 1975. 58:177–182.
16. Christenson RH, Azzazy HM. Biochemical markers of the acute coronary syndromes. Clin Chem. 1998. 44:1855–1864.
17. Kilpatrick WS, Wosornu D, McGuiness JB, Glen ACA. Early diagnosis of acute myocardial infarction: CK-MB and myoglobin compared. Ann Clin Biochem. 1993. 30:435–438.
18. Bhayana V, Cohoe S, Pellar TG, Jablonsky G, Henderson AR. Combination (multiple) testing for myocardial infarction using myoglobin, creatine kinase-2 (mass), and troponin T. Clin Biochem. 1994. 27:395–406.
19. Plebani M, Zaninotto M. Diagnostic strategies using myoglobin measurement in myocardial infarction. Clin Chim Acta. 1998. 272:69–77.
20. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992. 281:21–40.
21. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000. 80:1107–1213.
22. Eppenberger HM, Dawson DM, Kaplan NO. The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem. 1967. 242:204–209.
23. Perriard JC, Caravatti M, Perriard ER, Eppenberger HM. Quantitation of creatine kinase isoenzyme transition in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption. Arch Biochem Biophys. 1978. 191:90–100.
24. Caravatti M, Perriard JC, Eppenberger HM. Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken. Biosynthesis of creatine kinase subunits M and B. J Biol Chem. 1979. 254:1388–1394.
25. Trask RV, Strauss AW, Billadello JJ. Developmental regulation and tissue-specific expression of the human muscle creatine kinase gene. J Biol Chem. 1988. 263:17142–17149.
26. Lott JA, Nemesansky E. Creatine kinase. 1966. New York: Yearbook Press;166–182.
27. Klein LW, Kiemer BL, Howard E, et al. Incidence and clinical significance of transient creatine kinase elevations and the diagnosis of non-Q wave myocardial infarction associated with coronary angioplasty. J Am Coll Cardiol. 1991. 17:621–626.
28. Ravkilde J, Nissem H, Mickley H, et al. Cardiac Troponin T and CKMB mass release after visually successful percutaneous transluminal coronary angioplasty in stable angina pectoris. Am Heart J. 1994. 127:13–20.
29. Kuglemass AD, Cohen DJ, Muscucci M, et al. Elevation of creatine kinase myocardial isoform following otherwise successful directional coronary atherectomy and stenting. Am J Cardiol. 1994. 74:784–794.
30. Abdelmeguid AE, Topol EJ. The myth of the myocardial 'infarctlet' during percutaneous coronary revascularisation procedure. Circulation. 1996. 94:3369–3375.
31. Baum H, Braun S, Gerhardt W, et al. Multicenter evaluation of a second generation assay for cardiac troponin T. Clin Chem. 1997. 43:1877–1884.
32. Sato Y, Taniguchi R, Makiyama T, et al. Measurements of serum cardiac troponin T and plasma brain natriuretic peptide in patients with severe cardiac decompensation. Heart. 2002. 88:647–648.
33. Katus HA, Remppis A, Neumann FJ, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation. 1991. 83:902–912.
34. Ohman EM, Armstrong PW, Christenson RH, et al. Cardiac troponin T levels for risk stratification in acute myocardial ischemia. New Engl J Med. 1996. 335:1333–1341.
35. Bleier J, Vorderwinkler KP, Falkensammer J, et al. Different intracellular compartments of cardiac troponins and myosin heavy chains: a causal connection to their different early release after myocardial damage. Clin Chem. 1998. 44:1912–1918.
36. Mair J, Genser N, Morandell D, et al. Cardiac troponin I in the diagnosis of myocardial injury and infarction. Clin Chim Acta. 1996. 245:19–38.
37. Bodor GS, Porterfield D, Voss EM, Smith S, Apple FS. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem. 1995. 41:1710–1715.
38. Davies E, Gawad Y, Takahashi M, et al. Analytical performance and clinical utility of a sensitive immunoassay for determination of human cardiac troponin I. Clin Biochem. 1997. 30:479–490.
39. Pagani F, Bonetti G, Panteghini M. Comparative study of cardiac troponin I and T measurements in a routine extra-cardiological clinical setting. J Clin Lab Anal. 2001. 15:210–214.
40. Sato Y, Kita T, Takatsu Y, Kimura T. Biochemical markers of myocyte injury in heart failure. Heart. 2004. 90:1110–1113.
41. Adams JE, Bodor GS, Devile-Roman VG, et al. Cardiac Troponin I: a marker with high specificity for cardiac injury. Circulation. 1993. 88:101–106.
42. Missov E, Calzolari C, Davy JM, Leclercq F, Rossi M, Pau B. Cardiac troponin I in patients with hematologic malignancies. Coron Artery Dis. 1997. 8:537–541.
43. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000. 36:517–522.
44. Schulz O, Kromer A. Cardiac troponin I: a potential marker of exercise intolerance in patients with moderate heart failure. Am Heart J. 2002. 144:351–358.
45. Bodor GS, Porter S, Landt Y, Ladenson JH. Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin Chem. 1992. 38:2203–2214.
46. Larue C, Calzolari C, Bertinchant JP, Leclercq F, Grolleau R, Pau B. Cardiac-specific immunoenzymometric assay of troponin I in the early phase of acute myocardial infarction. Clin Chem. 1993. 39:972–979.
47. Kobayashi T, Takagi T, Konishi K. Amino acid sequence of porcine cardiac muscle troponin C. J Biochem. 1989. 106:55–59.
48. Conway RS, Natelson BH, Chen WH, et al. Enhanced coronary vasoconstriction in the Syrian myopathic hamster supports the microvascular spasm hypothesis. Cardiovasc Res. 1994. 28:320–324.
49. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol. 1997. 80:15L–25L.
50. Ganote C, Armstrong S. Ischemia and the myocyte cytoskeleton: review and speculation. Cardiovasc Res. 1993. 27:1387–1403.
51. Bing OH. Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol. 1994. 26:943–948.
52. Katz AM. Cell death in the failing heart: role of an unnatural growth response to overload. Clin Cardiol. 1995. 18:IV36–IV44.
53. Francis GS, Cohn JN, Johnson G, et al. The V-HeFT VA cooperative studies group. Plasma norepinephrine, plasma rennin activity, and congestive heart failure: relations to survival and the effects of therapy in V-HeFT II. Circulation. 1993. 87:VI40–VI48.
54. Schrier RW, Abraham WT. Mechanisms of disease: hormones and hemodynamics in heart failure. N Engl J Med. 1999. 341:577–585.
55. Tsutamoto T, Wada A, Maeda K, et al. Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: Prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation. 1997. 96:509–516.
56. Grantham JA, Borgeson DD, Burnett JC Jr. BNP: pathophysiological and potential therapeutic roles in acute congestive heart failure. Am J Physiol. 1997. 272:R1077–R1083.
57. Wei CM, Heublein DM, Perrella MA, et al. Natriuretic peptide system in human heart failure. Circulation. 1993. 88:1004–1009.
58. Mukoyama M, Nakao K, Hosoda K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans-evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 1991. 87:1402–1412.
59. Vanderheyden M, Bartunek J, Goethals M. Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail. 2004. 6:261–268.
60. Pemberton CJ, Johnson ML, Yandle TG, Espiner EA. Deconvolution analysis of cardiac natriuretic peptides during acute volume overload. Hypertension. 2000. 36:355–359.
61. Mueller T, Gegenhuber A, Poelz W, Haltmayer M. Head to head comparison of the diagnostic utility of BNP and NTproBNP in symptomatic and asymptomatic structural heart disease. Clin Chim Acta. 2004. 341:41–48.
62. Emdin M, Passino C, Prontera C, et al. Comparison of Brain Natriuretic Peptide (BNP) and Amino-Terminal ProBNP for Early Diagnosis of Heart Failure. Clin Chem. 2007. 53:1289–1297.
63. Takahashi T, Allen PD, Izumo S. Expression of A-, B- and C-type natriuretic peptide genes in failing and developing human ventricles-correlation with expression of the Ca(2+)-ATPase gene. Circ Res. 1992. 71:9–17.
64. Ala-Kopsala M, Ruskoaho H, Leppäluoto J, et al. Single assay for amino-terminal fragments of cardiac A- and B-type natriuretic peptides. Clin Chem. 2005. 51:708–718.
65. Schaap FG, van der Vusse GJ, Glatz JF. Fatty acid-binding proteins in the heart. Mol Cell Biochem. 1998. 180:43–51.
66. Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996. 35:243–282.
67. Glatz JF, van Bilsen M, Paulussen RJ, Veerkamp J, van der Vusse GJ, Reneman RS. Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim Biophys Acta. 1988. 961:148–152.
68. Kleine AH, Glatz JF, Van Nieuwenhoven FA, van der Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem. 1992. 116:155–162.
69. Haastrup B, Gill S, Kristensen SR, et al. Biochemical markers of ischemia for the early identification of acute myocardial infarction without ST segment elevation. Cardiology. 2000. 94:254–261.
70. Tambara K, Fujita M, Miyamoto S, Doi K, Nishimura K, Komeda M. Pericardial fluid level of heart-type cytoplasmic fatty acid-binding protein (H-FABP) is an indicator of severe myocardial ischemia. Int J Cardiol. 2004. 93:281–284.
71. Setsuta K, Seino Y, Ogawa T, Arao M, Miyatake Y. Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure. Am J Med. 2002. 113:717–722.
72. Arimoto T, Takeishi Y, Shiga R, et al. Prognostic value of elevated circulating heart-type fatty acid binding protein in patients with congestive heart failure. J Card Fail. 2005. 11:56–60.
73. Van Nieuwenhoven FA, Kleine AH, Wodzig WH, et al. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation. 1995. 92:2848–2854.
74. Sorichter S, Mair J, Koller A, Pelsers MM, Puschendorf B, Glatz JF. Early assessment of exercise induced skeletal muscle injury using plasma fatty acid binding protein. Br J Sports Med. 1998. 32:121–124.
75. Niizeki T, Takeishi Y, Arimoto T, et al. Heart-type fatty acid-binding protein is more sensitive than troponin T to detect the ongoing myocardial damage in chronic heart failure patients. J Card Fail. 2007. 13:120–127.
76. Goto T, Takase H, Toriyama T, et al. Circulating concentrations of cardiac proteins indicate the severity of congestive heart failure. Heart. 2003. 89:1303–1307.
77. Hansen MS, Stanton EB, Gawad Y, et al. Relation of circulating cardiac myosin light chain 1 isoform in stable severe congestive heart failure to survival and treatment with flosequinan. Am J Cardiol. 2002. 90:969–973.
78. Leger JOC, Larue C, Ming T, et al. Assay of serum cardiac myosin heavy chain fragments in patients with acute myocardial infarction: determination of infarct size and long-term follow-up. Am Heart J. 1990. 120:781–790.
79. Plebani M, Zaninotto M. Diagnostic strategies in myocardial infarction using myoglobin measurement. Eur Heart J. 1998. 19:N12–N15.
80. Sohmiya K, Tanaka T, Tsuji R, et al. Plasma and urinary heart-type cytoplasmic fatty acid-binding protein in coronary occlusion and reperfusion induced myocardial injury model. J Mol Cell Cardiol. 1993. 25:1413–1416.
81. Nageh T, Sherwood RA, Harris BM, Byrne JA, Thomas MR. Cardiac troponin T and I and creatine kinase-MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int J Cardiol. 2003. 92:285–293.
82. Püschel K, Lockemann U, Bartel J. Postmortem investigation of serum myoglobin levels with special reference to electrical fatalities. Forensic Sci Int. 1995. 72:171–177.
83. Fieguth A, Schumann G, Tröger HD, Kleemann WJ. The effect of lethal electrical shock on postmortem serum myoglobin concentrations. Forensic Sci Int. 1999. 105:75–82.
84. Zhu BL, Ishida K, Quan L, et al. Postmortem urinary myoglobin levels with reference to the cause of death. Forensic Sci Int. 2001. 115:183–188.
85. Burns J, Milroy CM, Hulcwicz B, West CR, Walkley SM, Roberts NB. Necropsy study of association between sudden death and cardiac enzymes. J Clin Pathol. 1992. 45:217–220.
86. Luna A, Villanueva E, Castellano M, Jiménez G. The determination of CK, LDH and its isoenzymes in pericardial fluid and its application to the post-mortem diagnosis of myocardial infarction. Forensic Sci Int. 1982. 19:85–91.
87. Luna A, Carmona A, Villanueva E. The postmortem determination of CK isozymes in the pericardial fluid in various causes of death. Forensic Sci Int. 1983. 22:23–30.
88. Osuna E, Perez-Carceles MD, Alvarez MV, Noguera J, Luna A. Cardiac troponin I (cTn I) and the postmortem diagnosis of myocardial infarction. Int J Legal Med. 1998. 111:173–176.
89. Cina SJ, Thompson WC, Fischer JC Jr, Brown DK, Titus JM, Smialek JE. A study of various morphologic variables and troponin I in pericardial fluid as possible discriminators of sudden cardiac death. Am J Forensic Med Pathol. 1999. 20:333–337.
90. Ellingsen CL, Hetland O. Serum concentrations of cardiac troponin T in sudden death. Am J Forensic Med Pathol. 2004. 25:213–215.
91. Khalifa AB, Najjar M, Addad F, Turki E, Mghirbi T. Cardiac troponin T (cTn T) and the postmortem diagnosis of sudden death. Am J Forensic Med Pathol. 2006. 27:175–177.
92. Zhu BL, Ishikawa T, Michiue T, et al. Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 2: analysis for application in the diagnosis of sudden cardiac death with regard to pathology. Leg Med (Tokyo). 2006. 8:94–101.
93. Cina SJ, Brown DK, Smialek JE, Collins KA. A rapid postmortem cardiac troponin T assay-laboratory evidence of sudden cardiac death. Am J Forensic Med Pathol. 2001. 22:173–176.
94. Dressler J, Felscher D, Koch R, Muller E. Troponin T in legal medicine. Lancet. 1998. 352:38.
95. Hausdorfer C, Pedal I, Zimmer G, Remppis A, Strobel G. Catecholamines, myofibrillary degeneration of the heart muscle and cardiac troponin T in various types of agony. Arch Kriminol. 1995. 196:46–57.
96. Matoba K, Terazawa K, Watanabe S, Yamada N, Ueda M. Problems in applying a rapid assay kit for cardiac troponin T to medico-legal blood samples. Hokkaido Igaku Zasshi. 2006. 81:359–363.
97. Batalis NI, Marcus BJ, Papadea CN, Collins KA. The role of postmortem cardiac markers in the diagnosis of acute myocardial infarction. J Forensic Sci. 2010. 55:1088–1091.
98. Cina SJ, Li DJ, Chan DW, Boitnott JK, Hruban RH, Smialek JE. Serum concentrations of cardiac troponin I in sudden death- pilot study. Am J Forensic Med Pathol. 1998. 19:324–328.
99. Zhu BL, Ishikawa T, Michiue T, et al. Postmortem cardiac troponin I and creatine kinase MB levels in the blood and pericardial fluid as markers of myocardial damage in medicolegal autopsy. Leg Med (Tokyo). 2007. 9:241–250.
100. Welsh TM, Kukes GD, Sandweiss LM. Differences of Creatine Kinase MB and Cardiac Troponin I Concentrations in Normal and Diseased Human Myocardium. Ann Clin Lab Sci. 2002. 32:44–49.
101. Pérez-Cárceles MD, Noguera J, Jiménez JL, Martínez P, Luna A, Osuna E. Diagnostic efficacy of biochemical markers in diagnosis post-mortem of ischaemic heart disease. Forensic Sci Int. 2004. 142:1–7.
102. Wang Q, Michiue T, Ishikawa T, Zhu BL, Maeda H. Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Leg Med (Tokyo). 2011. 13:226–232.
103. Tomásková E, Vorel F. Some possibilities in the diagnosis of early acute ischaemic changes in the heart muscle in sudden death. Soud Lek. 2010. 55:32–35.
104. Ooi DS, Isotalo PA, Veinot JP. Correlation of antemortem serum creatine kinase, creatine kinase-MB, troponin I, and troponin T with cardiac pathology. Clin Chem. 2000. 46:338–344.
105. Davies SJ, Gaze DC, Collinson PO. Investigation of cardiac troponins in postmortem subjects: comparing antemortem and postmortem levels. Am J Forensic Med Pathol. 2005. 26:213–215.
106. Peter J, Kirchner A, Kuhlisch E, Menschikowski M, Neef B, Dressler J. The relevance of the detection of troponins to the forensic diagnosis of cardiac contusion. Forensic Sci Int. 2006. 160:127–133.
107. Gaze DC, Davies SJ, Collinson PO. Cardiac troponin for the forensic diagnosis of cardiac contusion. Forensic Sci Int. 2007. 169:276.
108. Adams JE, Davila-Roman V, Bessey P. Improved detection of cardiac contusion with troponin I. Am Heart J. 1996. 131:308–312.
109. Ognibene A, Mori F, Santoni R. Cardiac troponin I in myocardial contusion. Clin Chem. 1998. 44:889–890.
110. Meng X, Ming M, Wang E. Heart fatty acid binding protein as a marker for postmortem detection of early myocardial damage. Forensic Sci Int. 2006. 160:11–16.
111. Michaud K, Augsburger M, Donzé N, et al. Evaluation of postmortem measurement of NT-proBNP as a marker for cardiac function. Int J Legal Med. 2008. 122:415–420.
112. Sabatasso S, Vaucher P, Augsburger M, Donzé N, Mangin P, Michaud K. Sensitivity and specificity of NT-proBNP to detect heart failure at post mortem examination. Int J Legal Med. 2011. 125:849–856.
113. Zhu BL, Ishikawa T, Michiue T, et al. Postmortem pericardial natriuretic peptides as markers of cardiac function in medico-legal autopsies. Int J Legal Med. 2007. 121:28–35.
114. Osuna E, Pérez-Cárceles MD, Vieira DN, Luna A. Distribution of biochemical markers in biologic fluids: application to the postmortem diagnosis of myocardial infarction. Am J Forensic Med Pathol. 1998. 19:123–128.
115. Pérez-Cárceles MD, Osuna E, Vieira DN, Luna A. Usefulness of myosin in the postmortem diagnosis of myocardial damage. Int J Legal Med. 1995. 108:14–18.
116. Pérez-Cárceles MD, Osuna E, Vieira DN, Luna A. Biochemical assessment of acute myocardial ischaemia. J Clin Pathol. 1995. 48:124–128.
117. Fechner G, Hauser R, Sepulchre MA, Brinkmann B. Immunohistochemical investigations to demonstrate vital direct traumatic damage of skeletal muscle. Int J Legal Med. 1991. 104:215–219.
118. Yücel D, Dalva K. Effects of in vitro hemolysis on 25 common biochemical tests. Clin Chem. 1992. 38:575–577.
119. Wu AH, Feng YJ, Moore R, et al. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. Clin Chem. 1998. 44:1198–1208.
120. Bodor GS, Oakley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PAW. Troponin I phosphorylation in the normal and failing adult human heart. Circulation. 1997. 96:1495–1500.
121. Larue C, Defacqua-Lacquement H, Calzolari C, Nguyen DL, Pau B. New monoclonal antibodies as probes for human cardiac troponin I: epitopic analysis with synthetic peptides. Mol Immunol. 1992. 29:271–278.
122. Apple FS. Clinical and analytical standardization issues confronting cardiac troponin I. Clin Chem. 1999. 45:18–20.
123. Fitzmaurice TF, Brown C, Rifai N, Wu AHB, Yeo KJ. False increase of cardiac troponin I with heterophilic antibodies. Clin Chem. 1998. 44:2212–2214.
124. Bohner J, von Pape K, Hannes W, Stegmann T. False-negative immunoassay results for cardiac troponin I probably due to circulating troponin I autoantibodies. Clin Chem. 1996. 42:2046.
125. Parry DM, Krahn J, Leroux M, Dalton J. False Positive Analytical Interference of Cardiac Troponin I Assays: An Important Consideration for Method Selection. Clinical Biochemistry. 1999. 32:667–669.
126. Hansen SH, Rossen K. Evaluation of cardiac troponin I immunoreaction in autopsy hearts: a possible marker of early myocardial infarction. Forensic Sci Int. 1999. 99:189–196.
127. Martínez Díaz F, Rodríguez-Morlensín M, Pérez-Cárceles MD, Noguera J, Luna A, Osuna E. Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage. Histol Histopathol. 2005. 20:475–481.
128. Ortmann C, Pfeiffer H, Brinkmann B. A comparative study on the immunohistochemical detection of early myocardial damage. Int J Legal Med. 2000. 113:215–220.
129. Campobasso CP, Dell'Erba AS, Addante A, Zotti F, Marzullo A, Colonna MF. Sudden Cardiac Death and Myocardial Ischemia Indicators - A Comparative Study of Four Immunohistochemical Markers. Am J Forensic Med Pathol. 2008. 29:154–161.
130. Hu BJ, Chen YC, Zhu JZ. Immunohistochemical study of fibronectin for postmortem diagnosis of early myocardial infarction. Forensic Sci Int. 1996. 78:209–217.
131. Hu BJ, Chen YC, Zhu JZ. Study on the specificity of fibronectin for post-mortem diagnosis of early myocardial infarction. Med Sci Law. 2002. 42:195–199.
Full Text Links
  • KJLM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr