Intest Res.  2014 Jul;12(3):184-193. 10.5217/ir.2014.12.3.184.

Clinical Application of Genetics in Management of Colorectal Cancer

Affiliations
  • 1Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. younghokim@skku.edu

Abstract

The extensive study of genetic alterations in colorectal cancer (CRC) has led to molecular diagnostics playing an increasingly important role in CRC diagnosis and treatment. Currently, it is believed that CRC is a consequence of the accumulation of both genetic and epigenetic genomic alterations. It is known that there are at least 3 major pathways that lead to colorectal carcinogenesis: (1) the chromosomal instability pathway, (2) the microsatellite instability pathway, and (3) the cytosine-phospho-guanine island methylator phenotype pathway. With recent advances in CRC genetics, the identification of specific molecular alterations responsible for CRC pathogenesis has directly influences clinical care. Patients at high risk for developing CRC can be identified by genetic testing for specific molecular alterations, and the use of molecular biomarkers for predictive and prognostic purposes is also increasing. This is clearly supported by the recent advances in genetic testing for CRC whereby specific molecular alterations are identified for the purpose of guiding treatment with targeting therapies such as anti-endothelial growth factor receptor monoclonal antibodies.

Keyword

Colorectal neoplasms; Chromosomal instability; Microsatellite instability; Epigenetic instability; Biological markers

MeSH Terms

Antibodies, Monoclonal
Biomarkers
Carcinogenesis
Chromosomal Instability
Colorectal Neoplasms*
Diagnosis
Epigenomics
Genetic Testing
Genetics*
Humans
Microsatellite Instability
Pathology, Molecular
Phenotype
Antibodies, Monoclonal

Cited by  4 articles

Three-year colonoscopy surveillance after polypectomy in Korea: a Korean Association for the Study of Intestinal Diseases (KASID) multicenter prospective study
Won Seok Choi, Dong Soo Han, Chang Soo Eun, Dong Il Park, Jeong-Sik Byeon, Dong-Hoon Yang, Sung-Ae Jung, Sang Kil Lee, Sung Pil Hong, Cheol Hee Park, Suck-Ho Lee, Jeong-Seon Ji, Sung Jae Shin, Bora Keum, Hyun Soo Kim, Jung Hye Choi, Sin-Ho Jung
Intest Res. 2018;16(1):126-133.    doi: 10.5217/ir.2018.16.1.126.

Genetic and epigenetic alterations of colorectal cancer
Sung Noh Hong
Intest Res. 2018;16(3):327-337.    doi: 10.5217/ir.2018.16.3.327.

Is methylation analysis of SFRP2, TFPI2, NDRG4, and BMP3 promoters suitable for colorectal cancer screening in the Korean population?
Soo-Kyung Park, Hae Lim Baek, Junghee Yu, Ji Yeon Kim, Hyo-Joon Yang, Yoon Suk Jung, Kyu Yong Choi, Hungdai Kim, Hyung Ook Kim, Kyung Uk Jeong, Ho-Kyung Chun, Kyungeun Kim, Dong Il Park
Intest Res. 2017;15(4):495-501.    doi: 10.5217/ir.2017.15.4.495.

Clinical Features and Prognosis of Resectable Primary Colorectal Signet-Ring Cell Carcinoma
Ho-Su Lee, Jae Seung Soh, Seohyun Lee, Jung Ho Bae, Kyung-Jo Kim, Byong Duk Ye, Jeong-Sik Byeon, Seung-Jae Myung, Suk-Kyun Yang, Sun A Kim, Young Soo Park, Seok-Byung Lim, Jin Cheon Kim, Chang Sik Yu, Dong-Hoon Yang
Intest Res. 2015;13(4):332-338.    doi: 10.5217/ir.2015.13.4.332.


Reference

1. Jung KW, Won YJ, Kong HJ, Oh CM, Lee DH, Lee JS. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2011. Cancer Res Treat. 2014; 46:109–123. PMID: 24851102.
Article
2. Coppede F. Epigenetic biomarkers of colorectal cancer: Focus on DNA methylation. Cancer Lett. 2014; 342:238–247. PMID: 22202641.
Article
3. Coppede F, Lopomo A, Spisni R, Migliore L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol. 2014; 20:943–956. PMID: 24574767.
Article
4. Marisa L, de Reynies A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013; 10:e1001453. PMID: 23700391.
Article
5. Tsang AH, Cheng KH, Wong AS, et al. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma. World J Gastroenterol. 2014; 20:3847–3857. PMID: 24744577.
Article
6. Bogaert J, Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol. 2014; 27:9–14. PMID: 24714764.
7. Pancione M, Remo A, Colantuoni V. Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Patholog Res Int. 2012; 2012:509348. PMID: 22888469.
Article
8. Michor F, Iwasa Y, Lengauer C, Nowak MA. Dynamics of colorectal cancer. Semin Cancer Biol. 2005; 15:484–493. PMID: 16055342.
Article
9. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998; 396:643–649. PMID: 9872311.
Article
10. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010; 138:2059–2072. PMID: 20420946.
Article
11. Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer. 2003; 3:695–701. PMID: 12951588.
Article
12. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011; 6:479–507. PMID: 21090969.
Article
13. Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J. Molecular pathways in colorectal cancer. J Gastroenterol Hepatol. 2012; 27:1423–1431. PMID: 22694276.
Article
14. Legolvan MP, Taliano RJ, Resnick MB. Application of molecular techniques in the diagnosis, prognosis and management of patients with colorectal cancer: a practical approach. Hum Pathol. 2012; 43:1157–1168. PMID: 22658275.
Article
15. Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008; 57:941–950. PMID: 18364437.
Article
16. Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel). 2013; 5:676–713. PMID: 24216997.
Article
17. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012; 5:19–27. PMID: 22574233.
18. Umar A, Risinger JI, Hawk ET, Barrett JC. Testing guidelines for hereditary non-polyposis colorectal cancer. Nat Rev Cancer. 2004; 4:153–158. PMID: 14964310.
Article
19. Narayan S, Roy D. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer. 2003; 2:41. PMID: 14672538.
20. Kloor M, Staffa L, Ahadova A, von Knebel Doeberitz M. Clinical significance of microsatellite instability in colorectal cancer. Langenbecks Arch Surg. 2014; 399:23–31. PMID: 24048684.
Article
21. Suk KT, Kim HS, Lee JH, et al. Clinicopathological characteristics of colorectal cancer according to microsatellite instability. Intest Res. 2009; 7:14–21.
22. Schnekenburger M, Diederich M. Epigenetics offer new horizons for colorectal cancer prevention. Curr Colorectal Cancer Rep. 2012; 8:66–81. PMID: 22389639.
Article
23. Wu WK, Sung JJ. MicroRNA dysregulations in gastrointestinal cancers: pathophysiological and clinical perspectives. Intest Res. 2012; 10:324–331.
Article
24. Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol. 2005; 45:629–656. PMID: 15822191.
Article
25. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007; 8:286–298. PMID: 17339880.
Article
26. Daniel FI, Cherubini K, Yurgel LS, de Figueiredo MA, Salum FG. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer. 2011; 117:677–687. PMID: 20945317.
Article
27. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001; 20:3139–3155. PMID: 11420731.
Article
28. Sharp AJ, Stathaki E, Migliavacca E, et al. DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 2011; 21:1592–1600. PMID: 21862626.
Article
29. Anier K, Malinovskaja K, Aonurm-Helm A, Zharkovsky A, Kalda A. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology. 2010; 35:2450–2461. PMID: 20720536.
Article
30. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002; 3:415–428. PMID: 12042769.
Article
31. Domingo E, Niessen RC, Oliveira C, et al. BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene. 2005; 24:3995–3998. PMID: 15782118.
Article
32. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002; 418:934. PMID: 12198537.
33. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61:759–767. PMID: 2188735.
Article
34. Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol. 2001; 96:2992–3003. PMID: 11693338.
Article
35. Gala M, Chung DC. Hereditary colon cancer syndromes. Semin Oncol. 2011; 38:490–499. PMID: 21810508.
Article
36. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010; 138:2044–2058. PMID: 20420945.
Article
37. Hampel H, Frankel WL, Martin E, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008; 26:5783–5788. PMID: 18809606.
Article
38. Boland CR, Troncale FJ. Familial colonic cancer without antecedent polyposis. Ann Intern Med. 1984; 100:700–701. PMID: 6712034.
Article
39. Marra G, Boland CR. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst. 1995; 87:1114–1125. PMID: 7674315.
Article
40. Bonis PA, Trikalinos TA, Chung M, et al. Evidence Report/Technology Assessment No. 150. Hereditary nonpolyposis colorectal cancer: diagnostic strategies and their implications. Rockville, MD: Agency for Healthcare Research and Quality;2007.
41. Peltomaki P. Lynch syndrome genes. Fam Cancer. 2005; 4:227–232. PMID: 16136382.
Article
42. Kastrinos F, Stoffel EM, Balmana J, Steyerberg EW, Mercado R, Syngal S. Phenotype comparison of MLH1 and MSH2 mutation carriers in a cohort of 1,914 individuals undergoing clinical genetic testing in the United States. Cancer Epidemiol Biomarkers Prev. 2008; 17:2044–2051. PMID: 18708397.
Article
43. Kovacs ME, Papp J, Szentirmay Z, Otto S, Olah E. Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat. 2009; 30:197–203. PMID: 19177550.
Article
44. Niessen RC, Hofstra RM, Westers H, et al. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosomes Cancer. 2009; 48:737–744. PMID: 19455606.
Article
45. Syngal S, Fox EA, Eng C, Kolodner RD, Garber JE. Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1. J Med Genet. 2000; 37:641–645. PMID: 10978352.
Article
46. Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into clinical practice. Gut. 2011; 60:116–129. PMID: 20921207.
Article
47. Burt RW, Leppert MF, Slattery ML, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004; 127:444–451. PMID: 15300576.
Article
48. Bjork J, Akerbrant H, Iselius L, et al. Periampullary adenomas and adenocarcinomas in familial adenomatous polyposis: cumulative risks and APC gene mutations. Gastroenterology. 2001; 121:1127–1135. PMID: 11677205.
Article
49. Bulow S, Bjork J, Christensen IJ, et al. Duodenal adenomatosis in familial adenomatous polyposis. Gut. 2004; 53:381–386. PMID: 14960520.
Article
50. Dobbie Z, Spycher M, Mary JL, et al. Correlation between the development of extracolonic manifestations in FAP patients and mutations beyond codon 1403 in the APC gene. J Med Genet. 1996; 33:274–280. PMID: 8730280.
Article
51. Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene. 2004; 23:6445–6470. PMID: 15322516.
Article
52. Bisgaard ML, Fenger K, Bulow S, Niebuhr E, Mohr J. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat. 1994; 3:121–125. PMID: 8199592.
Article
53. Schreibman IR, Baker M, Amos C, McGarrity TJ. The hamartomatous polyposis syndromes: a clinical and molecular review. Am J Gastroenterol. 2005; 100:476–490. PMID: 15667510.
Article
54. Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000; 119:1447–1453. PMID: 11113065.
Article
55. Howe JR, Mitros FA, Summers RW. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol. 1998; 5:751–756. PMID: 9869523.
Article
56. Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998; 391:184–187. PMID: 9428765.
Article
57. Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998; 280:1086–1088. PMID: 9582123.
Article
58. Aretz S. The differential diagnosis and surveillance of hereditary gastrointestinal polyposis syndromes. Dtsch Arztebl Int. 2010; 107:163–173. PMID: 20358032.
59. Briggs S, Tomlinson I. Germline and somatic polymerase epsilon and delta mutations define a new class of hypermutated colorectal and endometrial cancers. J Pathol. 2013; 230:148–153. PMID: 23447401.
Article
60. Church JM. Polymerase proofreading-associated polyposis: a new, dominantly inherited syndrome of hereditary colorectal cancer predisposition. Dis Colon Rectum. 2014; 57:396–397. PMID: 24509466.
61. Seshagiri S. The burden of faulty proofreading in colon cancer. Nat Genet. 2013; 45:121–122. PMID: 23358219.
Article
62. Palles C, Cazier JB, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013; 45:136–144. PMID: 23263490.
Article
63. Jaeger E, Leedham S, Lewis A, et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet. 2012; 44:699–703. PMID: 22561515.
Article
64. Tomlinson IP, Carvajal-Carmona LG, Dobbins SE, et al. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet. 2011; 7:e1002105. PMID: 21655089.
Article
65. Wakefield LM, Hill CS. Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer. 2013; 13:328–341. PMID: 23612460.
Article
66. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005; 23:609–618. PMID: 15659508.
Article
67. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003; 349:247–257. PMID: 12867608.
Article
68. Bertagnolli MM, Niedzwiecki D, Compton CC, et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol. 2009; 27:1814–1821. PMID: 19273709.
Article
69. Fallik D, Borrini F, Boige V, et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 2003; 63:5738–5744. PMID: 14522894.
70. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009; 360:1408–1417. PMID: 19339720.
Article
71. Lyseng-Williamson KA. Cetuximab: a guide to its use in combination with FOLFIRI in the first-line treatment of metastatic colorectal cancer in the USA. Mol Diagn Ther. 2012; 16:317–322. PMID: 23055389.
72. Xu Q, Xu AT, Zhu MM, Tong JL, Xu XT, Ran ZH. Predictive and prognostic roles of BRAF mutation in patients with metastatic colorectal cancer treated with anti-epidermal growth factor receptor monoclonal antibodies: a meta-analysis. J Dig Dis. 2013; 14:409–416. PMID: 23615046.
Article
73. Leshno A, Gat-Harlap A, Arber N. Can an aspirin a day keep the colorectal cancer away? Intest Res. 2012; 10:229–234.
Article
74. Nishihara R, Lochhead P, Kuchiba A, et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013; 309:2563–2571. PMID: 23800934.
Article
75. Liao X, Lochhead P, Nishihara R, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012; 367:1596–1606. PMID: 23094721.
Article
Full Text Links
  • IR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr