Endocrinol Metab.  2011 Dec;26(4):310-316. 10.3803/EnM.2011.26.4.310.

Increased Carotid Intima-Media Thickness is Associated with Progression of Diabetic Nephropathy in Patients with Type 2 Diabetes

Affiliations
  • 1Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea. mychung@jnu.ac.kr

Abstract

BACKGROUND
Cardiovascular risk is higher among people with diabetic nephropathy than among those with normal renal function. Carotid intima-media thickness (IMT) is an independent predictor of cardiovascular mortality in type 2 diabetic patients. However, the relationship between carotid IMT and diabetic nephropathy is not well known. The aim of our study was to elucidate whether carotid IMT is associated with progression of diabetic nephropathy in type 2 diabetic patients.
METHODS
We recruited a total of 354 type 2 diabetic patients with diabetic nephropathy. Renal function was evaluated by serum creatinine levels, estimated glomerular filtration rate (eGFR), and urinary albumin/creatinine ratio (ACR). Carotid IMT was assessed using B-mode ultrasound by measuring generally used parameters. Baseline-to-study end changes in eGFR were calculated, and the yearly change of eGFR (mL/min/yr) was computed.
RESULTS
Age, diabetes duration, ACR, and eGFR were significantly correlated with mean or maximal carotid IMT; however, lipid profiles, HbA1c, and blood pressure were not correlated. The mean yearly eGFR change was -4.9 +/- 5.3 mL/min/yr. The yearly eGFR change was negatively correlated with mean and maximal carotid IMT. After adjusting for age and diabetes duration, the mean IMT is an independent predictor of yearly eGFR change.
CONCLUSION
Carotid IMT may be a predictor of diabetic nephropathy progression in patients with type 2 diabetes.

Keyword

Carotid artery intima-media thickness; Glomerular filtration rate; Type 2 diabetes mellitus

MeSH Terms

Blood Pressure
Carotid Intima-Media Thickness
Creatinine
Diabetes Mellitus, Type 2
Diabetic Nephropathies
Glomerular Filtration Rate
Humans
Creatinine

Figure

  • Fig. 1. Relationship between change of estimated glomerular filtration rate (eGFR) and intima-media thickness (IMT). A. Mean IMT. B. Maximal IMT.


Reference

1. Marks JB, Raskin P. Nephropathy and hypertension in diabetes. Med Clin North Am. 82:877–907. 1998.
Article
2. Nelson RG, Newman JM, Knowler WC, Sievers ML, Kunzelman CL, Pet-titt DJ, Moffett CD, Teutsch SM, Bennett PH. Incidence of end-stage renal disease in type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia. 31:730–736. 1988.
Article
3. Korean Society of Nephrology Registration Committee. Renal replacement therapy in Korea-Insan memorial dialysis registry 2003-. Korean J Nephrol. 23:S381–S404. 2004.
4. Suh MR, Lee EB, Yang WS, Kim SB, Park SK, Lee SK, Park JS, Hong CG. Survival analysis of hemodialysis patients: a single center study. Korean J Nephrol. 21:636–644. 2002.
5. Susztak K, Sharma K, Schiffer M, McCue P, Ciccone E, Böttinger EP. Ge-nomic strategies for diabetic nephropathy. J Am Soc Nephrol. 14:S271–S278. 2003.
Article
6. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 320:1161–1165. 1989.
7. Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 4:444–452. 2008.
Article
8. Raptis AE, Viberti G. Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes. 109:S424–S437. 2001.
Article
9. Singh DK, Winocour P, Farrington K. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat Clin Pract Nephrol. 4:216–226. 2008.
Article
10. Ishimura E, Nishizawa Y, Kawagishi T, Okuno Y, Kogawa K, Fukumoto S, Maekawa K, Hosoi M, Inaba M, Emoto M, Morii H. Intrarenal hemody-namic abnormalities in diabetic nephropathy measured by duplex Doppler sonography. Kidney Int. 51:1920–1927. 1997.
Article
11. Taniwaki H, Nishizawa Y, Kawagishi T, Ishimura E, Emoto M, Okamura T, Okuno Y, Morii H. Decrease in glomerular filtration rate in Japanese patients with type 2 diabetes is linked to atherosclerosis. Diabetes Care. 21:1848–1855. 1998.
Article
12. Kawamori R, Yamasaki Y, Matsushima H, Nishizawa H, Nao K, Hougaku H, Maeda H, Handa N, Matsumoto M, Kamada T. Prevalence of carotid atherosclerosis in diabetic patients. Ultrasound high-resolution B-mode imaging on carotid arteries. Diabetes Care. 15:1290–1294. 1992.
Article
13. Temelkova-Kurktschiev TS, Koehler C, Leonhardt W, Schaper F, Henkel E, Siegert G, Hanefeld M. Increased intimal-medial thickness in newly detected type 2 diabetes: risk factors. Diabetes Care. 22:333–338. 1999.
14. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation. 96:1432–1437. 1997.
15. Ito H, Komatsu Y, Mifune M, Antoku S, Ishida H, Takeuchi Y, Togane M. The estimated GFR, but not the stage of diabetic nephropathy graded by the urinary albumin excretion, is associated with the carotid intima-media thickness in patients with type 2 diabetes mellitus: a cross-sectional study. Cardiovasc Diabetol. 9:18. 2010.
Article
16. Yokoyama H, Aoki T, Imahori M, Kuramitsu M. Subclinical atherosclerosis is increased in type 2 diabetic patients with microalbuminuria evaluated by intima-media thickness and pulse wave velocity. Kidney Int. 66:448–454. 2004.
Article
17. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 16:31–41. 1976.
Article
18. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 74:1399–1406. 1986.
Article
19. Imai E, Horio M, Yamagata K, Iseki K, Hara S, Ura N, Kiyohara Y, Makino H, Hishida A, Matsuo S. Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res. 31:433–441. 2008.
Article
20. Leehey DJ, Kramer HJ, Daoud TM, Chatha MP, Isreb MA. Progression of kidney disease in type 2 diabetes: beyond blood pressure control: an obser-vational study. BMC Nephrol. 6:8. 2005.
Article
21. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int. 69:375–382. 2006.
Article
22. Murussi M, Gross JL, Silveiro SP. Glomerular filtration rate changes in nor-moalbuminuric and microalbuminuric type 2 diabetic patients and normal individuals: a 10-year follow-up. J Diabetes Complications. 20:210–215. 2006.
23. Trevisan R, Vedovato M, Mazzon C, Coracina A, Iori E, Tiengo A, Del Prato S. Concomitance of diabetic retinopathy and proteinuria accelerates the rate of decline of kidney function in type 2 diabetic patients. Diabetes Care. 25:2026–2031. 2002.
Article
24. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 310:356–360. 1984.
Article
25. Mattock MB, Morrish NJ, Viberti G, Keen H, Fitzgerald AP, Jackson G. Prospective study of microalbuminuria as predictor of mortality in NID-DM. Diabetes. 41:736–741. 1992.
Article
26. Damsgaard EM, Mogensen CE. Microalbuminuria in elderly hyperglycae-mic patients and controls. Diabet Med. 3:430–435. 1986.
Article
27. Gross JL, Friedman R, Azevedo MJ, Silveiro SP, Pecis M. Effect of age and sex on glomerular filtration rate measured by 51Cr-EDTA. Braz J Med Biol Res. 25:129–134. 1992.
28. Kogawa K, Nishizawa Y, Hosoi M, Kawagishi T, Maekawa K, Shoji T, Okuno Y, Morii H. Effect of polymorphism of apolipoprotein E and angio-tensin-converting enzyme genes on arterial wall thickness. Diabetes. 46:682–687. 1997.
Article
29. Kramer H, Jacobs DR Jr, Bild D, Post W, Saad MF, Detrano R, Tracy R, Cooper R, Liu K. Urine albumin excretion and subclinical cardiovascular disease. The Multi-Ethnic Study of Atherosclerosis. Hypertension. 46:38–43. 2005.
30. Keech AC, Grieve SM, Patel A, Griffiths K, Skilton M, Watts GF, Mar-wick TH, Groshens M, Celermajer DS. Urinary albumin levels in the normal range determine arterial wall thickness in adults with type 2 diabetes: a FIELD substudy. Diabet Med. 22:1558–1565. 2005.
Article
31. Mykkänen L, Zaccaro DJ, O'Leary DH, Howard G, Robbins DC, Haffner SM. Microalbuminuria and carotid artery intima-media thickness in non-diabetic and NIDDM subjects. The Insulin Resistance Atherosclerosis Study (IRAS). Stroke. 28:1710–1716. 1997.
32. Ishimura E, Taniwaki H, Tsuchida T, Obatake N, Emoto M, Shoji T, Shioi A, Inaba M, Nishizawa Y. Urinary albumin excretion associated with arterial wall stiffness rather than thickness in type 2 diabetic patients. J Nephrol. 20:204–211. 2007.
33. Hermans MM, Henry RM, Dekker JM, Nijpels G, Heine RJ, Stehouwer CD. Albuminuria, but not estimated glomerular filtration rate, is associated with maladaptive arterial remodeling: the Hoorn Study. J Hypertens. 26:791–797. 2008.
Article
34. Preston E, Ellis MR, Kulinskaya E, Davies AH, Brown EA. Association between carotid artery intima-media thickness and cardiovascular risk factors in CKD. Am J Kidney Dis. 46:856–862. 2005.
Article
35. Freedman BI, Langefeld CD, Lohman KK, Bowden DW, Carr JJ, Rich SS, Wagenknecht LE. Relationship between albuminuria and cardiovascular disease in type 2 diabetes. J Am Soc Nephrol. 16:2156–2161. 2005.
Article
36. Kawamoto R, Ohtsuka N, Kusunoki T, Yorimitsu N. An association between the estimated glomerular filtration rate and carotid atherosclerosis. Intern Med. 47:391–398. 2008.
Article
37. Dong X, He M, Song X, Lu B, Yang Y, Zhang S, Zhao N, Zhou L, Li Y, Zhu X, Hu R. Performance and comparison of the Cockcroft-Gault and simplified Modification of Diet in Renal Disease formulae in estimating glomerular filtration rate in a Chinese type 2 diabetic population. Diabet Med. 24:1482–1486. 2007.
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr