Brain Neurorehabil.  2015 Sep;8(2):81-85. 10.12786/bn.2015.8.2.81.

Enhancing Motor Learning with Transcranial Direct Current Stimulation

Affiliations
  • 1Department of Rehabilitation Medicine, Pusan National University Hospital, Korea.
  • 2Department of Rehabilitation Medicine, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Korea. rmshin@pusan.ac.kr

Abstract

Motor learning is a relatively permanent change of improving motor skills, resulting from repetitive training and an important process of motor recovery in neurorehabilitation. There are various methods of physical therapies, medications, stem cell therapy, invasive and non-invasive neuromodulation techniques for recovery of motor function after stroke. In this review, we describe motor learning and transcranial direct current stimulation among noninvasive neuromodulation techniques to enhance the motor learning.

Keyword

motor learning; neurorehabilitation; plasticity; transcranial direct current stimulation

MeSH Terms

Learning*
Motor Skills
Stem Cells
Stroke

Figure

  • Fig. 1 Neuromodulation techniques for improving motor function after stroke.


Reference

1. Winters BD, Saksida LM, Bussey TJ. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev. 2008; 32:1055–1070.
2. McGaugh JL. Memory--a century of consolidation. Science. 2000; 287:248–251.
3. Schmidt RA. A schema theory of discrete motor skill learning. Psychol Rev. 1975; 82:225–260.
4. Green RE, Shanks DR. On the existence of independent explicit and implicit learning systems: an examination of some evidence. Mem Cognit. 1993; 21:304–317.
5. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005; 15:161–167.
Article
6. Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44:121–133.
Article
7. Stickgold R. Sleep-dependent memory consolidation. Nature. 2005; 437:1272–1278.
Article
8. Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995; 377:155–158.
Article
9. Doyon J, Song A, Lalonde F, Karni A, Adams M, Ungerleider L. Plastic changes within the cerebellum associated with motor sequence learning: A fMRI study. NeuroImage. 1999; 9:S506–S506.
10. Kim YH. Mechanism of neurolasticity after brain injury and neurorehabilitation. Brain NeuroRehabil. 2008; 1:6–11.
Article
11. Nudo RJ. Remodeling of cortical motor representations after stroke: implications for recovery from brain damage. Mol Psychiatry. 1997; 2:188–191.
Article
12. Stanton PK, Sejnowski TJ. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989; 339:215–218.
Article
13. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993; 361:31–39.
Article
14. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 1995; 684:206–208.
Article
15. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000; 527(Pt 3):633–639.
Article
16. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003; 553:293–301.
Article
17. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010; 66:198–204.
Article
18. Reis J, Robertson EM, Krakauer JW, Rothwell J, Marshall L, Gerloff C, Wassermann EM, Pascual-Leone A, Hummel F, Celnik PA, Classen J, Floel A, Ziemann U, Paulus W, Siebner HR, Born J, Cohen LG. Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation? Brain Stimul. 2008; 1:363–369.
Article
19. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003; 15:619–626.
Article
20. Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, Rigonatti SP, Silva MT, Fregni F. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett. 2006; 404:232–236.
Article
21. Kuo MF, Unger M, Liebetanz D, Lang N, Tergau F, Paulus W, Nitsche MA. Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia. 2008; 46:2122–2128.
Article
22. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009; 106:1590–1595.
Article
23. Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011; 49:800–804.
Article
24. Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC. Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry. 2004; 56:634–639.
Article
25. Yoo WK. The Concept of Metaplasticity. Brain NeuroRehabil. 2014; 7:1–4.
Article
26. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006; 5:708–712.
Article
27. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, Oliveri M, Pascual-Leone A, Paulus W, Priori A, Walsh V. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008; 1:326–336.
Article
28. Madhavan S, Weber KA 2nd, Stinear JW. Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res. 2011; 209:9–17.
Article
29. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007; 25:123–129.
30. Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke. 2012; 43:2185–2191.
Article
31. Lefebvre S, Laloux P, Peeters A, Desfontaines P, Jamart J, Vandermeeren Y. Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients. Front Hum Neurosci. 2012; 6:343.
Article
32. Lefebvre S, Dricot L, Laloux P, Gradkowski W, Desfontaines P, Evrard F, Peeters A, Jamart J, Vandermeeren Y. Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain. 2015; 138:149–163.
Article
33. Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2015; 14:171–174.
Article
34. Wessel MJ, Zimerman M, Timmermann JE, Heise KF, Gerloff C, Hummel FC. Enhancing Consolidation of a New Temporal Motor Skill by Cerebellar Noninvasive Stimulation. Cereb Cortex. 2015; pii: bhu335. [Epub ahead of print].
Article
Full Text Links
  • BN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr