Korean J Orthod.  2016 May;46(3):146-154. 10.4041/kjod.2016.46.3.146.

Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

Affiliations
  • 1Department of Orthodontics, School of Dentistry, Lanzhou University, Lanzhou, P. R. China. caobch@lzu.edu.cn
  • 2Department of Physics, School of Physical Science and Technology, Lanzhou University, Lanzhou, P. R. China.

Abstract


OBJECTIVE
Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of TiO2 on organic compounds, we hoped to synthesize a novel bracket with a TiO2 thin film to develop a photocatalytic antimicrobial effect.
METHODS
The sol-gel dip coating method was used to prepare TiO2 thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans.
RESULTS
Films with 5 coating layers annealed at 700℃ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. TiO2 thin films with 5 coating layers annealed at 700℃ exhibited the greatest antimicrobial activity under UV-A light irradiation.
CONCLUSIONS
These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets.

Keyword

Biomaterial science; Esthetics; Ceramic brackets; Antibacterial

MeSH Terms

Candida albicans
Ceramics*
Crystallins
Dental Enamel
Esthetics
Hope
Lactobacillus acidophilus
Methods
Methylene Blue
Microscopy, Electron, Scanning
Ultraviolet Rays
X-Ray Diffraction
Crystallins
Methylene Blue
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
    DB Error: unknown error