Immune Netw.  2009 Dec;9(6):209-235. 10.4110/in.2009.9.6.209.

The Role of Regulatory T Cells in Cancer

Affiliations
  • 1Department of Immunology, Chonbuk National University Medical School, Chonju, Chonbuk, Korea. tyha77@yahoo.com

Abstract

There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA.

Keyword

Cancer; Regulatory T cells; Suppressor T cells; MicroRNA; Immunotherapy

MeSH Terms

Animals
Explosions
Humans
Immunotherapy
Mice
MicroRNAs
T-Lymphocytes, Regulatory
Vaccination
MicroRNAs

Figure

  • Figure 1 Tumor-mediated generation of regulatory T (Treg) cells and the effect on the tumor microenvironment. Tumor cells induce the generation of Treg cells through both cell contact-dependent and cell contact-independent mechanisms. Soluble protein such as TGFβ produced by tumor cells promote the proliferation of Treg cells and induce the conversion of naive CD4+CD25- T cells into Treg cells. Tumor cells also express costimulatory molecules such as CD80/CD86 or CD70 and interact with naive T cells to convert these naive T cells into Treg cells. The increased numbers of Treg cells inhibit the NK cells, CD4+ T cells, CD8+T cells and the other cells and contribute to the progression of tumors.

  • Figure 2 Therapeutic targeting of regulatory T cells. The patients with cancer might be subjected to traditional tumor therapy, conventional immunotherapy and/or novel tumor immunotherapy. To attain more effective, reliable and consistent clinical efficacy, it might be essential to apply combinatorial therapy. APC, antigen presenting cell; CTLA4, cytotoxic T-lymphocytes-associated antigen 4; PD1, programmed cell death; COX2, cyclooxygenase.


Cited by  2 articles

The Role of MicroRNAs in Regulatory T Cells and in the Immune Response
Tai-You Ha
Immune Netw. 2011;11(1):11-41.    doi: 10.4110/in.2011.11.1.11.

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease
Tai-You Ha
Immune Netw. 2011;11(3):135-154.    doi: 10.4110/in.2011.11.3.135.


Reference

1. Block MS, Markovic SN. The tumor/immune interface: clinical evidence of cancer immunosurveillance, immunoediting and immunosubversion. Am J Immunol. 2009. 5:29–40.
Article
2. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselectionand immunosubversion. Nat Rev Immunol. 2006. 6:715–727.
Article
3. Dougan M, Dranoff G. Immune therapy for cancer. Ann Rev Immunol. 2009. 27:83–117.
Article
4. Fujimoto S, Greene MI, Sehon AH. Regulation of the immune response to tumor antigens. II. The nature of immunosuppressor cells in tumor-bearing hosts. J Immunol. 1976. 116:800–806.
5. Ha TY, Park HJ, On KK, Lee HK, Lee JH, Lee MY. Potentiation of anti-tumor immunity by modulation of suppressor T cells. II. Regression of tumor by modulation of suppressor T cells. Korean J Immunol. 1995. 17:101–118.
6. Gershon RK, Cohen P, Hencin R, Liebhaber SA. Suppressor T cells. J Immunol. 1972. 108:586–590.
7. Gershon RK, Kondo K. Infectious immunological tolerance. Immunology. 1971. 21:903–914.
8. Durkin HG, Waksman BH. Thymus and tolerance. Is regulation the major function of the thymus? Immunol Rev. 2001. 182:33–57.
Article
9. Waksman BH. Tolerance, the thymus, and suppressor T cells. Clin Exp Immunol. 1977. 28:363–374.
10. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanisms of self-tolerance causes various autoimmune diseases. J Immunol. 1995. 155:1151–1164.
11. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune response. Ann Rev Immunol. 2004. 22:531–562.
12. Zou W. Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol. 2006. 6:295–307.
Article
13. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006. 108:804–811.
Article
14. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007. 117:1167–1174.
Article
15. Yang ZZ, Ansell SM. The role of Treg cells in the cancer immunological response. Am J Immunol. 2009. 5:17–28.
Article
16. Shen LS, Wang J, Shen DF, Yuan XL, Dong P, Li MX, Xue J, Zhang FM, Ge HL, Xu D. CD4+CD25+CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol. 2009. 131:109–118.
Article
17. Ke X, Wang J, Li L, Chen IM, Wang H, Yang XF. Roles of CD4+CD25(high)FOXP3 Tregs in lymphomas and tumors are complex. Front Biosci. 2008. 13:3986–4001.
18. Schabowsky RH, Madiredii S, Sharma R, Yolcu ES, Shirwan H. Targeting CD4+CD25+Foxp3+ regulatory T-cells for the augmentation of cancer immunotherapy. Curr Opin Investig Drugs. 2007. 8:1002–1008.
19. Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, Walsh K, Sweeney C, Leavy O, Fletcher J, Lavelle EC, Dunne P, Mills KH. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol. 2008. 180:3797–3806.
Article
20. Nicholaou T, Ebert LM, Davis ID, McArthur GA, Jackson H, Dimopoulos N, Tan B, Maraskovsky E, Miloradovic L, Hopkins W, Pan L, Venhaus R, Hoffman EW, Chen W, Cebon J. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients wih advanced malignant melanoma. Clin Cancer REs. 2009. 15:2166–2173.
Article
21. Curiel TJ. Regulatory T cells and treatment of cancer. Curr Opin Immunol. 2008. 20:241–246.
Article
22. Leon K, Carcia K, Carneiro J, Lage A. How regulatory CD25+CD4+ T cells impinge on tumor immunobiology: The differential response of tumors to therapies. J Immunol. 2007. 179:5659–5668.
Article
23. Tokuno K, Hazama S, Yoshino S, Yshida S, Oka M. Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res. 2009. 29:1527–1532.
24. Carreras J, Lopez-Guillermo A, Roncador G, Vilamor N, Colomo L, Marinez A, Hamoudi R, Howat WJ, Montserrat E, Campo E. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol. 2009. 27:1470–1476.
Article
25. Liu Z, Kim JH, Falo LD Jr, You Z. Tumor regulatory T cells potently abrogate antitimor immunity. J Immunol. 2009. 182:6160–6167.
Article
26. Salama P, Phillips M, Grieu F, Moris M, Zepts N, Joseph D, Platell C, Iacopetta B. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009. 27:186–192.
Article
27. Wang RF. Regulatory T cells and innate immune regulation in tumor immunity. Springer Semin Immunopathol. 2006. 28:17–23.
Article
28. Fietta AM, Morosini M, Passadore I, Cascina A, Draghi P, Dore R, Rossi S, Pozzi E, Meloni F. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing raidofrequency thermal ablation for lung cancer. Human Immunol. 2009. 70:477–486.
Article
29. Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK, Clay TM. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood. 2008. 112:610–618.
Article
30. Ruter J, Barnett BG, Kryczek I, Brumlik MJ, Daniel BJ, Coukos G, Zou W, Curiel TJ. Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci. 2009. 14:1761–1770.
Article
31. Mailloux AW, Young MR. NK-dependent increases in CCL22 secretion selectively recruits regulatory T cells to the tumor microenvironment. J Immunol. 2009. 182:2753–2765.
Article
32. Liyanage UK, Goedegebuure PS, Moore TT, Viehl CT, Moo-Young TA, Larson JW, Frey DM, Ehlers JP, Eberlein TJ, Linehan DC. Increase prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother. 2006. 29:416–424.
Article
33. Lizee G, Radvanyi LG, Overwijk WW, Hwu P. Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res. 2006. 12:4794–4803.
Article
34. Lin YC, Chang LY, Huang CT, Peng HM, Dutta A, Chen TC, Yeh CT, Lin CY. Effector/memory but not naive regulatory T cells are responsible for the loss of concomitant tumor immunity. J Immunol. 2009. 182:6095–6104.
Article
35. van der Viliet HJ, Koon HB, Atkins MB, Balk SP, Exley MA. Exploiting regulatory T-cell populations for the imunotherapy of cancer. J Immunother. 2007. 30:591–595.
36. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002. 169:2756–2761.
Article
37. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005. 65:2457–2464.
Article
38. Matkowski R, Gisterek I, Halon A, Lacko A, Szewczyk K, Staszek U, Pudelko M, Szynglarewicz B, Szelachowska J, Zolnierek A, Kornafel J. The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer Res. 2009. 29:2445–2451.
39. Schreiber TH. The use of FoxP3 as a biomarker and prognostic factor for malignant human tumors. Cancer Epidemiol Biomarkers Prev. 2007. 16:1931–1934.
Article
40. Siddiqui SA, Frigola X, Bonne-Annee S, Mercader M, Kuntz SM, Krambeck AE, Sengupta S, Dong H, Cheville JC, Lohse CM, Krco CJ, Webster WS, Leibovich BC, Blute ML, Knutson KL, Kwon ED. Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res. 2007. 13:2075–2081.
Article
41. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N, Fuller GN. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 2008. 14:5166–5172.
Article
42. Nishikawa H, Jager E, Ritter G, Old LJ, Gnjatic S. CD4+CD25+ regulatory Tcells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood. 2005. 106:1008–1011.
Article
43. Mahnke K, Schönfeld K, Fondel S, Ring S, Karakhanova S, Wiedemeyer K, Bedke T, Johnson TS, Storn V, Schallenberg S, Enk AH. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer. 2007. 120:2723–2733.
Article
44. Juang CM, Hung CF, Yeh JY, Horng HC, Twu NF, Cheng MH, Wen KC, Yuan CC, Chao KC, Wu TC, Yen MS. Regulatory T cells: Potential target in anticancer immunotherapy. Taiwan J Obstet Gynecol. 2007. 46:215–221.
Article
45. Shevach EM. Mechanisms of Toxp3+ T regulatory cell-medicated suppression. Immunity. 2009. 30:636–645.
Article
46. Ha TY. The role of suppressor T cells in mycobacterial infection. Korean Lepr Bull. 2008. 41:3–25.
47. Ha TY. Regulatory T cell therapy for autoimmune disease. Immune Netw. 2008. 8:107–123.
Article
48. Ha TY. The role of suppressor T cells in bacterial infections. KAST Rev Modern Sci & Technol. 2008. 4:105–120.
49. Shevach EM. Certified professionals: CD4+ CD25+ suppressor T cells. J Exp Med. 2001. 193:F41–F46.
50. Mudd PA, Teague BN, Farris AD. Regulatory T cells and systemic lupus erythematosus. Scand J Immunol. 2006. 64:211–218.
Article
51. Ha TY, Waksman BH. Role of the thymus in tolerance.X. "Suppressor" activity of antigen-stimulated rat thymocytes transferred to normal recipients. J Immunol. 1973. 110:1290–1299.
52. Ha TY, Waksman BH, Treffers HP. Thymic suppressor cell. I. Separation of subpopulation with suppressor activity. J Exp Med. 1974. 139:13–23.
53. Ha TY, Waksman BH, Treffers HP. The thymic suppressor cell. II. Metabolic requirement of suppressor activity. Immunol Commun. 1974. 3:351–359.
Article
54. Riley JL, June CH, Blazar BR. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity. 2009. 30:656–665.
Article
55. Mabarrack NH, Turner NL, Mayrhofer G. Recent thymic origin, differentiation, and turnover of regulatory T cells. J Leukoc Biol. 2008. 84:1287–1297.
Article
56. Ziegler SF. FOXP3: of mice and men. Ann Rev Immunol. 2006. 24:209–226.
Article
57. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor. Immunity. 2009. 30:899–911.
Article
58. Qin FX. Dynamic behavior and function of Foxp3+ regulatory T cells in tumor bearing host. Cell Mol Immunol. 2009. 6:3–13.
Article
59. Huen J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol. 2009. 9:83–89.
Article
60. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005. 22:329–341.
Article
61. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest. 2003. 112:1437–1443.
62. Hubert P, Jacobs , Caberg JH, Boniver J, Delvenne P. The cross-talk between dendritic and regulatory T cells: good or evil? J Leukoc Biol. 2007. 82:781–794.
Article
63. Toda A, Piccirillo CA. Development and function of naturally occurring CD4+CD25+ regulatory T cells. J Leukoc Biol. 2006. 80:458–470.
Article
64. Wang HY, Wang RF. Regulatory T cells and cancer. Curr Opin Immunol. 2007. 19:217–223.
Article
65. Han Y, Guo Q, Zhang M, Chen Z, Cao X. CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol. 2009. 182:111–120.
Article
66. Maggi E, Cosmi L, Liotta F, Romagnani P, Romagnani S, Annunziato F. Thymic regulatory T cells. Autoimmun Rev. 2005. 4:579–586.
Article
67. Generali D, Bates G, Berruti A, Brizzi MP, Camp L, Bonardi S, Bersiga A, Allevi G, Milani M, Aguggini S, Dogliotti L, Banham AH, Harris AL, Bottini A, Fox SB. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer. Clin Cancer Res. 2009. 15:1046–1051.
Article
68. Powell DJ Jr, Parker LL, Rosenberg SA. Large-scale depletion of CD25+ regulatory T cells from patient leukapheresis samples. J Immunother. 2005. 28:403–411.
Article
69. Beissert S, Schwarz A, Schwarz T. Regulatory T cells. J Invest Dermatol. 2006. 126:15–24.
Article
70. Brahmachari S, Pahan K. Suppression of regulatory T cells by? IL-12p40 homodimer via nitric oxide. J Immunol. 2009. 183:2045–2058.
Article
71. Wan YY, Flavell RA. 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev. 2007. 220:199–213.
Article
72. Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive Foxp3+ regulatory T cells: More of the same or a division of labor? Immunity. 2009. 30:626–635.
Article
73. Zhou X, Bailley-Bucktrout S, Jeker LT, Bluestone JA. Plasticity of CD4+Foxp3+ T cells. Curr Opin Immunol. 2009. 21:281–285.
74. Valzasina B, Piconese S, Guiducci C, Conombo MP. Tumor-induced expansion of regulatory? T cells by conversion of CD4+CD25-lymphocytes is thymus and proliferation independent. Cancer Res. 2006. 66:4488–4895.
Article
75. Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X, Zhang Q, Lonning S, Teicher BA, Lee C. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol. 2007. 178:2883–2892.
Article
76. Viel CT, Moore TT, Liyanage UK, Frey DM, Ehlers JP, Eberlein TJ, Goedegebuure PS, Linehan DC. Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann Surg Oncol. 2006. 13:1252–1258.
Article
77. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rsoenberg SA, Restifo NP. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. 2005. 174:2591–2601.
Article
78. Linehan DC, Goedegebuure PS. CD25+CD4+ regulatory T-cells in cancer. Immunol Res. 2005. 32:155–168.
79. Hiur T, Kagamu H, Miur S, Ishida A, Tanaka H, Tanaka J, Gejyo F, Yshizawa H. Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression. J Immunol. 2005. 175:5058–5066.
Article
80. Hontsu S, Yoneyama H, Ueha S, Terashima Y, Kitabatake M, Nakan A, It T, Kimura H, Matsushima K. Visualization of naturally occurring Foxp3+ regulatory T cells in normal and tumor-bearing mice. Int Immunopharmacol. 2004. 4:1785–1793.
Article
81. Tien AH, Xu L, Helgason CD. Altered immunity accompanies disease progression in a mouse model of prostate dysplasia. Cancer Res. 2005. 65:2947–2955.
Article
82. Liu JY, Zhang XS, Ding Y, Peng RQ, Cheng X, Zhang NH, Xia JC, Zeng YX. The changes of CD4+CD25+/CD4+proportion in spleen of tumor-bearing BALB/c mice. J Transl Med. 2005. 3:5.
83. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A. Depletion of CD25+regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol. 2002. 32:3267–3275.
Article
84. Ghiringhelli F, Lamonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004. 34:336–344.
Article
85. El Andaloussi A, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg. 2006. 105:430–437.
Article
86. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. 2001. 194:823–832.
Article
87. Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005. 65:5211–5220.
Article
88. Turk MJ, Guevara-Patiño JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med. 2004. 200:771–782.
Article
89. Lutsiak ME, Tagaya Y, Adams AJ, Schlom J, Sabzevari H. Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells. J Immunol. 2008. 180:5871–5881.
Article
90. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimur K, Sugai H, Fujii H. CCL17 and CCL22 chemokines within tumor environment are related to accumulation of Toxp3+ regulatory T cells in gastric cancer. Int J Cancer. 2008. 122:2286–2293.
Article
91. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004. 10:942–949.
Article
92. Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P, Sutmuller RP, Adema GJ. CD4+Foxp3+ regulatory T cells gradually accumulate in glioma during tumor growth and efficiently suppress antiglioma immue responses in vivo. Int J Cancer. 2007. 121:95–105.
Article
93. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol. 1999. 163:5211–5218.
94. Tanaka H, Tanaka J, Kjaegaard J, Shu S. Depletion of CD4+CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother. 2002. 25:207–217.
Article
95. Prasad SJ, Farrand KJ, Matthews SA, Chang JH, McHugh RS, Ronchese F. Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+regulatory T cells. J Immunol. 2005. 174:90–98.
Article
96. Van Meirvenne S, Dullaers M, Heirman C, Straetman L, Michiels A, Thielemans K. In vivo depletion of CD4+CD25+regulatory T cells enhances the antigen-specific primary and memory CTL response elicited by mature mRNA-electroporated dendritic cells. Mol Ther. 2005. 12:922–932.
Article
97. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 1999. 59:3128–3133.
98. Fu T, Shen Y, Fujimoto S. Tumor-specific CD4(+) suppressor T-cell clone capable of inhibiting rejection of syngeneic sarcoma in A/J mice. Int J Cancer. 2000. 87:680–687.
Article
99. Jones E, Dahm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V, Gallimore A. Deletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun. 2002. 2:1.
100. Casares N, Arribillaga L, Sarobe P, Dotor J, Lopez-Diaz de Cerio A, Melero I, Prieto J, Borrás-Cuesta F, Lasarte JI. CD4+/CD25+regulatory cells inhibit activation of tumor-primed CD4+Tcells with IFN-γ-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol. 2003. 171:5931–5939.
Article
101. Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, Fu YX. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med. 2005. 201:779–791.
Article
102. Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med. 2008. 205:2125–2138.
Article
103. Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z, Rosenberg SA, Restifo NP. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest. 2007. 117:492–501.
Article
104. Heier I, Mofgaard PO, Brandtzaeg P, Jahnsen FL, Karisson M. Depletion of CD4+CD25+ regulatory T cells inhibits local tumour growth in a mouse model of B cell lymphoma. Clin Exp Immunol. 2008. 152:381–387.
Article
105. Lee CH, Chiang YH, Chang SE, Chong CL, Cheng BM, Roffler SR. Tumor-localized ligation of CD3 and CD28 with systemic regulatory T-cell depletion induces potent innate and adaptive antitumor response. Clin Cancer Res. 2009. 15:2756–2766.
Article
106. Chen YL, Fang JH, Lai MD, Shan YS. Depletion of CD4(+)CD25(+) regulatory T cells can promote local immunity to suppress tumor growth in benzo[a]pyrene-induced forestomach carcinoma. World J Gastroenterol. 2008. 14:5797–5809.
Article
107. Tan MC, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS, Linehan DC. Distribution of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol. 2009. 182:1746–1755.
Article
108. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008. 322:271–275.
Article
109. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH. regulatory CD4(+) CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001. 61:4766–4772.
110. Woo EY, Yeh H, Chu CS, Schlienger K, Carrol RG, Riley JL, Kaiser LR, June CH. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002. 168:4272–4276.
Article
111. Orentas RJ, Kohler ME, Johnson BD. Suppression of anti-cancer immunity by regulatory T cells: back to the future. Semin Cancer Biol. 2006. 16:137–149.
Article
112. Danesse S, Rutella S. The Janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity. Curr Med Chem. 2007. 14:649–666.
Article
113. Barnett BG, Ruter J, Kryczek I, Brumlik MJ, Cheng PJ, Daniel BJ, Coukos G, Zou W, Curiel TJ. Regulatory T cells: a new frontier in cancer immunotherapy. Adv Exp Med Biol. 2008. 622:255–260.
Article
114. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A. CD4+CD25+ regulatory Tcells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer. 2003. 98:1089–1099.
Article
115. Kawaida H, Kono K, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Ooi A, Fujii H. Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer. J Surg Res. 2005. 124:151–157.
Article
116. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Myyagawa N, Omata H, Fujii H. CD4(+) CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother. 2006. 55:1064–1071.
Article
117. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res. 2003. 9:4404–4408.
118. Xu H, Mao Y, Dai Y, Wang Q, Zhang X. CD4+CD25+ regulatory T cells in patients with advanced gastrointestinal cancer treated with chemotherapy. Onkologie. 2009. 32:246–252.
119. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, Bitoa C, Doffin AC, Durand I, Olive D, Perez S, Pasqual N, Faure C, Ray-Coquard I, Puisieux A, Caux C, Blay JY, Menetrier-Caux C. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009. 69:2000–2009.
Article
120. Qin XJ, Shi HZ, Deng JM, Liang QL, Jiang J, Ye ZJ. CCL22 recruits CD4-positive CD25-positive regulatory T cells into malignant pleural effusion. Clin Cancer Res. 2009. 15:2231–2237.
Article
121. Wieczorek G, Asemissen A, Model F, Turbachova I, Floess S, Liebenberg V, Baron U, Stauch D, Kotsch K, Pratschke J, Hamann A, Loddenkemper C, Stein H, Volk HD, Hoffmüller U, Grützkau A, Mustea A, Huehn J, Scheibenbogen C, Olek S. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 2009. 69:599–608.
Article
122. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer. 2005. 92:913–920.
Article
123. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL. The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007. 13:6301–6311.
Article
124. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007. 25:2586–2593.
Article
125. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S. FOXP3+ regulatory T cells affect the development and progression of hepatocarinogenesis. Clin Cancer Res. 2007. 13:902–911.
Article
126. Gray CP, Arosio P, Hersey P. Association of increased levels of heavy-chain ferritin with increased CD4+CD25+regulatory T-cell levels in patients with melanoma. Clin Cancer Res. 2003. 9:2551–2559.
127. Viguier M, Lemaître F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P, Ferradini L. Foxp3 expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 2004. 173:1444–1453.
Article
128. Mao C, Wang S, Jiang Q, Tong J, Ma J, Yang M, Xu X, Qiu G, Shao Q, Li L, Xu H. Increased CD4+CD25+FOXP3+ regulatory T cells in cancer patients from conversion of CD4+CD25-T cells through tumor-derived factors. Onkologie. 2008. 31:243–248.
Article
129. Powell DP Jr, Felipe-Silva A, Merino MJ, Ahmadzadeh M, Allen T, Levy C, Whie DE, Mavroukakis S, Kreitman RJ, Rosenberg SA, Pastan I. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol. 2007. 179:4919–4928.
Article
130. Javia LR, Rosenberg SA. CD4+CD25+suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother. 2003. 26:85–93.
131. McCarter MD, Baumgartner J, Escobar GA, Richter D, Lewis K, Robinson W, Wilson C, Palmer BE, Gonzalez R. Immunosuppressive dendritic and regulatory T cells are upregulated in melanoma patients. Ann Surg Oncol. 2007. 14:2854–2860.
Article
132. Vence L, Palucka AK, Fay JW, Ito T, Liu YJ, Bancherau J, Ueno H. Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci USA. 2007. 104:20884–20889.
Article
133. Pallandre JR, Brillard E, Créhange G, Radlolvie A, Remy-Martin JP, Saas P, Rohrlich PS, Pivot X, Ling X, Tiberghien P, Borg C. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol. 2007. 179:7593–7604.
Article
134. Wang W, Edington HD, Rao UN, Jukic DM, Radfar A, Wang H, Kirkwood JM. Effects of high-dose IFNα2b on regional lymph node metastases of human melanoma: Modulation of STAT5, FOXP3, and IL-17. Clin Cancer Res. 2008. 14:8314–8320.
Article
135. Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+CD25(hi) Foxp3+regulatory T cells in cancer patients. Blood. 2006. 107:2409–2414.
Article
136. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006. 12:5423–5434.
Article
137. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellström M, Egevad L, Pisa P. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006. 177:7398–7405.
Article
138. Rozková D, Tiserová H, Fucíková J, Last'ovicka J, Podrazil M, Ulcová H, Budínský V, Prausová J, Linke Z, Minárik I, Sedivá A, Spísek R, Bartůnková J. FOCUS on FOCIS: combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin Immunol. 2009. 131:1–10.
Article
139. Jensen HK, Donskov F, Nordsmark M, Marcussen N, von der Maase H. Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin Cancer Res. 2009. 15:1052–1058.
Article
140. Li X, Ye DF, Xie X, Chen HZ, Lu WG. Proportion of CD4CD25 regulatory T cell is increased in the patients with ovarian carcinoma. Cancer Invest. 2005. 23:399–403.
Article
141. Leffers N, Gooden MJM, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AGJ, Daemen T, Nijman HW. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesion of advanced stage ovarian cancer. Cancer Immunol Immunother. 2009. 58:449–459.
Article
142. Fattorossi A, Battaglia A, Ferrandina G, Coronetta F, Legge F, Salutari V, Scambia G. Neoadjuvant therapy changes the lymphocyte composition of tumor-draining lymph nodes in cervical carcinoma. Cancer. 2004. 100:1418–1428.
Article
143. Fattorossi A, Battaglia A, Ferrandina G, Buzzonetti A, Legge F, Salutari V, Scambla G. Lymphocyte compostion of tumor draining lymphnodes from cervical and endometrial cancer patients. Gynecol Oncol. 2004. 92:106–115.
Article
144. Wolf AM, Wof D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003. 9:606–612.
145. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris A, Banham AH. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and hose at risk of late relapse. J Clin Oncol. 2006. 24:5373–5380.
Article
146. Ohara M, Yamaguchi Y, Matsuura K, Murakami S, Arihiro K, Okada M. Possible involvement of regulatory T cells in tumor onset and progression in primary breast cancer. Cancer Immunol Immunother. 2009. 58:441–447.
Article
147. Hueman MT, Stojadinovic A, Storrer CE, Foley RJ, Gurney JM, Shriver CD, Ponniah S, Peoples GE. Levels of circulating regulatory CD4+CD25+ T cells are decreased in breast cancer patients after vaccination with a HER2/neu peptide (E75) and GM-CSF vaccine. Breast Cancer Res Treat. 2006. 98:17–29.
Article
148. Merio A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Mènard S, Tagliabue E, Balsari A. FOXP3 expression and overall survival in breast cancer. J Clin Oncol. 2009. 27:1746–1752.
Article
149. Lehe C, Ghebeh H, Al-Sulaiman A, Al Qudaihi G, Al-Hussein K, Almohareb F, Chaudhri N, Alsharif F, Al-Zahrani H, Tbakhi A, Aljurf M, Dermime S. The Wilms' tumor antigen is a novel target for human CD4+ regulatory T cells: implications for immunotherapy. Cancer Res. 2008. 68:6350–6359.
Article
150. Beyer M, Kochaneck M, Giese T, Endle E, Weihrauch MR, Knolle PA, Classen S, Schultze JL. In vivo peripheral expansion of naive CD4+CD25highFoxp3+ regulatory T cells in patients with multiple myeloma. Blood. 2006. 107:3940–3949.
Article
151. Prabhala RH, Nerj P, Bae JE, Tassone P, Shammas MA, Allam CK, Daley JF, Chauhan D, Blanchard E, Thatte HS, Anderson KC, Munshi NC. Dysfuntional T regulatory cells in multiple myeloma. Blood. 2006. 107:301–304.
152. Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J, Utsunomiya A, Harada M, Kikuchi M. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol. 2004. 126:81–84.
Article
153. Yano H, Ishida T, Inagaki A, Ishii T, Kusumoto S, Komatsu H, Iida S, Utsunomiya A, Ueda R. Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer. 2007. 120:2052–2057.
Article
154. Motta M, Rassenti L, Shelvin BJ, Lerner S, Kipps TJ, Keating MJ, Wierda WG. Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia. 2005. 19:1788–1793.
Article
155. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Edle E, Knolle PA, Thomas RK, von Bergwelt-Baildon M, Debey S, Hallek M, Schultze JL. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005. 106:2018–2025.
Article
156. Wang X, Zheng J, Liu J, Yao J, He Y, Li X, Yu J, Yang J, Liu Z, Huang S. Increased population of CD4+CD25high, regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol. 2005. 75:468–476.
Article
157. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, Foon KA, Whitside TL, Boyiadzis M. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009. 15:3325–3332.
Article
158. Carreras J, Lopez-Guillermo A, Fox BC, Coloomo L, Martinez A, Roncador G, Montserrat E, Campo E, Banham AH. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood. 2006. 108:2957–2964.
Article
159. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM. Intratumoral CD4+CD25+regulatory T-cell-mediated suppression of infiltrating CD4+T-cells in B-cell non-Hodgkin lymphoma. Blood. 2006. 107:3639–3646.
Article
160. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin's lymphoma. Cancer Res. 2006. 66:10145–10152.
Article
161. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, Vickers MA. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004. 103:1755–1762.
Article
162. Alvaro T, Lejeune M, Salvadó MT, Bosch R, García JF, Jaén J, Banham AH, Roncador G, Montalbán C, Piris MA. Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res. 2005. 11:1467–1473.
Article
163. Unitt E, Rsushbrook SM, Marshall A, Davies S, Gibbs P, Morris LS, Coleman N, Alexander GJM. Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology. 2005. 41:722. 730.
Article
164. Baecher-Allan C, Viglietta V, Hafler DA. Human CD4+CD25+ regulatory T cells. Semin Immunol. 2004. 16:89–98.
Article
165. Kosmaczewska A, Ciszak L, Potoczek S, Frydecka I. The significance of Treg cells in defective tumor immunity. Arch Immunol Ther EXp (Warsz). 2008. 56:181–191.
Article
166. Foss FM. DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma. 2000. 1:110–116.
Article
167. Wong BY, Gregory SA, Dang NH. Denileukin diftitox as novel targeted therapy for lymphoid malignancies. Cancer Invest. 2007. 25:495–501.
Article
168. Chin KM, Foss FM. Biologic correlates of response and survival in patients with cutaneous T-cell lymphoma treated with denileukin diftitox. Clin Lymphoma Myeloma. 2006. 7:199–204.
Article
169. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005. 115:3623–3633.
Article
170. Foss F. Clinical experience with denileukin diftitox (ONTAK). Semin Oncol. 2006. 33:1 Suppl 3. S11–S16.
Article
171. Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood. 2007. 110:3192–3201.
Article
172. Powell DJ Jr, Attia P, Ghetie V, Schindler J, Vitetta ES, Rosenberg SA. Partial reduction of human FOXP3+ CD4 T cells in vivo after CD25-directed recombinant immunotoxin administration. J Immunother. 2008. 31:189–198.
Article
173. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL, Deng J, Xu M, Briest S, Biragyn A. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res. 2009. 69:5996–6004.
Article
174. Curtin JF, Candolfi M, Fakhouri TM, Liu C, Alden A, Edwards M, Lowenstein PR, Castro MG. Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. PLoS One. 2008. 3:e1983.
Article
175. Yang XF. Factors regulating apoptosis and homeostasis of CD4+ CD25(high) FOXP3+ regulatory T cells are new therapeutic targets. Front Biosci. 2008. 13:1472–1499.
Article
176. Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res. 2007. 13:1362–1366.
Article
177. Ling X, Arlinghaus RB. Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res. 2005. 65:2532–2536.
Article
178. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med. 2003. 197:403–411.
Article
179. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang RF. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science. 2005. 309:1380–1384.
Article
180. Wang RF, Peng G, Wang HY. Regulatory T cells and Toll-like receptors in tumor immunity. Semin Immunol. 2006. 18:136–142.
Article
181. Chakraborty NG, Chattopadhyay S, Mehrotra S, Chhabra A, Mukherji B. Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum Immunol. 2004. 65:794–802.
Article
182. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res. 2007. 67:371–380.
Article
183. François V, Ottaviani S, Renkvist N, Stockis J, Schuler G, Thielemans K, Colau D, Marchand M, Boon T, Lucas S, van der Bruggen P. The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res. 2009. 69:4335–4345.
Article
184. Jacob JB, Kong YC, Nalbantoglu I, Snower DP, Wei WZ. Tumor regression following DNA vaccination and regulatory T cell depletion in neu transgenic mice leads to an increased risk for autoimmunity. J Immunol. 2009. 182:5873–5881.
Article
185. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006. 12:5423–5434.
Article
186. Shevach EM. Fatal attraction: tumors beckon regulatory T cells. Nat Med. 2004. 10:900–901.
Article
187. Lu H. FOXP3 expression and prognosis: role of both the tumor and T cells. J Clin Oncol. 2009. 27:1735–1736.
Article
188. Kryczek I, Liu R, Wang G, Wu K, Shu X, Szeliga W, Vatan L, Finlayson E, Huang E, Simeone D, Redman B, Welling TH, Chang A, Zou W. FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res. 2009. 69:3995–4000.
Article
189. Badoual C, Hans S, Fridman WH, Brasnu D, Erdman S, Tartour E. Revisiting the prognostic value of regulatory T cells in patients with cancer. J Clin Oncol. 2009. 27:e5–e6.
Article
190. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Aqueznay Nel H, Mosseri V, Laccourreye O, Bruneval P, Fridman WH, Brasnu DF, Tartour E. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006. 12:465–472.
Article
191. Wolf D, Rumpold H, Koppelstätter C, Gastl GA, Steurer M, Mayer G, Gunsilius E, Tilg H, Wolf AM. Telomere length of in vivo expanded CD4(+)CD25 (+) regulatory T-cells is preserved in cancer patients. Cancer Immunol Immunother. 2006. 55:1198–1208.
Article
192. Elpek KG, Lacelle C, Singh NP, Yolcu ES, Shirwan H. CD4+CD25+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. J Immunol. 2007. 178:6840–6848.
Article
193. Shafer-Weaver KA, Anderson MJ, Stagliano K, Malyguine A, Greenberg NM, Hurwitz AA. Cutting Edge: tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells. J Immunol. 2009. 183:4848–4852.
Article
194. Petrausch U, Jensen SM, Twitty C, Poehlein CH, Haley DP, Walker EB, Fox BA. Disruption of TGF-beta signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity. J Immunol. 2009. 183:3682–3689.
Article
195. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009. 30:899–911.
Article
196. Ashley CW, Baecher-Allan C. Cutting Edge: responder T cells regulate human DR+ effector regulatory T cell activity via granzyme B. J Immunol. 2009. 183:4843–4847.
Article
197. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2009. 30:80–91.
Article
198. Lodish HF, Zhou B, Liu G, Chen CZ. Micromanagement of the immune system by microRNAs. Nat Rev Immunol. 2008. 8:120–130.
Article
199. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009. 136:26–36.
Article
200. Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008. 29:343–351.
Article
201. Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol. 2009. 182:2578–2582.
Article
202. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009. 136:586–591.
Article
Full Text Links
  • IN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr