J Cardiovasc Ultrasound.  2015 Dec;23(4):244-252. 10.4250/jcu.2015.23.4.244.

Differential Prognostic Value of Coronary Computed Tomography Angiography in Relation to Exercise Electrocardiography in Asymptomatic Subjects

Affiliations
  • 1Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea. hjchang@yuhs.ac
  • 2Severance Biomedical Science Institute, Yonsei University Health System, Seoul, Korea.
  • 3Department of Research Affairs, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.
  • 4Division of Radiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.

Abstract

BACKGROUND
To explore the prognostic performance of coronary computed tomography angiography (CCTA) and exercise electrocardiography (XECG) in asymptomatic subjects.
METHODS
We retrospectively enrolled 812 (59 +/- 9 years, 60.8% male) asymptomatic subjects who underwent CCTA and XECG concurrently from 2003 through 2009. Subjects were followed-up for major adverse cardiac events (MACE) including cardiac death, nonfatal myocardial infarction, unstable angina, and revascularization after 90 days from index CCTA.
RESULTS
The prevalence of occult coronary artery disease (CAD) detected by CCTA was 17.5% and 120 subjects (14.8%) had positive XECG. During a mean follow-up of 37 +/- 16 months, nine subjects experienced MACE. In multivariable Cox-regression analysis, only the presence of CAD by CCTA independently predicted future MACE (p = 0.002). Moreover, CAD by CCTA improved the predictive value when added to a clinical risk factor model using the likelihood ratio test (p < 0.001). Notably, the prognostic value of CCTA persisted in the moderate-to-high-risk group as classified by the Duke treadmill score (p = 0.040), but not in the low-risk group (p = 0.991).
CONCLUSION
CCTA provides incremental prognostic benefit over and above XECG in an asymptomatic population, especially for those in a moderate-to-high-risk group as classified by the Duke treadmill score. Risk stratification using XECG may prove valuable for identifying asymptomatic subjects who can benefit from CCTA.

Keyword

Coronary artery disease; Coronary computed tomography angiography; Exercise electrocardiography; Asymptomatic population

MeSH Terms

Angina, Unstable
Angiography*
Coronary Artery Disease
Death
Electrocardiography*
Follow-Up Studies
Myocardial Infarction
Prevalence
Retrospective Studies
Risk Factors

Figure

  • Fig. 1 Kaplan-Meier survival curve of the MACE free survival according to results of XECG (A), risk stratification with DTS (B), and the presence of CAD on CCTA (C). MACE: major adverse cardiac events, XECG: exercise electrocardiography, DTS: Duke treadmill score, CAD: coronary artery disease, CCTA: coronary computed tomography angiography.

  • Fig. 2 Cox proportional hazard regression analysis for major adverse cardiac events according to the presence of CAD by CCTA in low risk group (A) and moderate to high risk group (B) classified with DTS - adjusted with age, gender, hypertension, diabetes mellitus, dyslipidemia, and current smoking. CAD: coronary artery disease, CCTA: coronary computed tomography angiography, DTS: Duke treadmill score.

  • Fig. 3 Time-dependent ROC curve analysis for prediction of MACE in moderate risk group classified with Duke treadmill score according to clinical risk factor model (solid line) and clinical risk factor plus CAD on CCTA model (dashed line). AUC: area under curve, CAD: coronary artery disease, CCTA: coronary computed tomography angiography, MACE: major adverse cardiac event, ROC: receiver operating characteristic.


Reference

1. Gibbons RJ, Jones DW, Gardner TJ, Goldstein LB, Moller JH, Yancy CW. American Heart Association. The American Heart Association's 2008 statement of principles for healthcare reform. Circulation. 2008; 118:2209–2218.
2. Christopher Jones R, Pothier CE, Blackstone EH, Lauer MS. Prognostic importance of presenting symptoms in patients undergoing exercise testing for evaluation of known or suspected coronary disease. Am J Med. 2004; 117:380–389.
3. O'Malley PG, Redberg RF. Risk refinement, reclassification, and treatment thresholds in primary prevention of cardiovascular disease: incremental progress but significant gaps remain. Arch Intern Med. 2010; 170:1602–1603.
4. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King SB 3rd, Kligfield PD, Krumholz HM, Kwong RY, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, Shaw LJ, Sikkema JD, Smith CR Jr, Smith SC Jr, Spertus JA, Williams SV. American College of Cardiology Foundation. American Heart Association Task Force on Practice Guidelines. American College of Physicians. American Association for Thoracic Surgery. Preventive Cardiovascular Nurses Association. Society for Cardiovascular Angiography and Interventions. Society of Thoracic Surgeons. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012; 60:e44–e164.
5. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, Hlatky MA, Hodgson JM, Kushner FG, Lauer MS, Shaw LJ, Smith SC Jr, Taylor AJ, Weintraub WS, Wenger NK, Jacobs AK, Smith SC Jr, Anderson JL, Albert N, Buller CE, Creager MA, Ettinger SM, Guyton RA, Halperin JL, Hochman JS, Kushner FG, Nishimura R, Ohman EM, Page RL, Stevenson WG, Tarkington LG, Yancy CW. American College of Cardiology Foundation. American Heart Association. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010; 56:e50–e103.
6. Detrano R, Gianrossi R, Froelicher V. The diagnostic accuracy of the exercise electrocardiogram: a meta-analysis of 22 years of research. Prog Cardiovasc Dis. 1989; 32:173–206.
7. Aktas MK, Ozduran V, Pothier CE, Lang R, Lauer MS. Global risk scores and exercise testing for predicting all-cause mortality in a preventive medicine program. JAMA. 2004; 292:1462–1468.
8. Goraya TY, Jacobsen SJ, Pellikka PA, Miller TD, Khan A, Weston SA, Gersh BJ, Roger VL. Prognostic value of treadmill exercise testing in elderly persons. Ann Intern Med. 2000; 132:862–870.
9. Mark DB, Shaw L, Harrell FE Jr, Hlatky MA, Lee KL, Bengtson JR, McCants CB, Califf RM, Pryor DB. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med. 1991; 325:849–853.
10. Cho I, Shim J, Chang HJ, Sung JM, Hong Y, Shim H, Kim YJ, Choi BW, Min JK, Kim JY, Shim CY, Hong GR, Chung N. Prognostic value of multidetector coronary computed tomography angiography in relation to exercise electrocardiogram in patients with suspected coronary artery disease. J Am Coll Cardiol. 2012; 60:2205–2215.
11. Cho I, Min HS, Chun EJ, Park SK, Choi Y, Blumenthal RS, Rivera JJ, Nasir K, Kim YJ, Sohn DW, Oh BH, Park YB, Chang HJ. Coronary atherosclerosis detected by coronary CT angiography in asymptomatic subjects with early chronic kidney disease. Atherosclerosis. 2010; 208:406–411.
12. Choi EK, Choi SI, Rivera JJ, Nasir K, Chang SA, Chun EJ, Kim HK, Choi DJ, Blumenthal RS, Chang HJ. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008; 52:357–365.
13. Djaberi R, Schuijf JD, Boersma E, Kroft LJ, Pereira AM, Romijn JA, Scholte AJ, Jukema JW, Bax JJ. Differences in atherosclerotic plaque burden and morphology between type 1 and 2 diabetes as assessed by multislice computed tomography. Diabetes Care. 2009; 32:1507–1512.
14. Nucifora G, Schuijf JD, van Werkhoven JM, Jukema JW, Djaberi R, Scholte AJ, de Roos A, Schalij MJ, van der Wall EE, Bax JJ. Prevalence of coronary artery disease across the Framingham risk categories: coronary artery calcium scoring and MSCT coronary angiography. J Nucl Cardiol. 2009; 16:368–375.
15. Zeina AR, Odeh M, Rosenschein U, Zaid G, Barmeir E. Coronary artery disease among asymptomatic diabetic and nondiabetic patients undergoing coronary computed tomography angiography. Coron Artery Dis. 2008; 19:37–41.
16. Kwon SW, Kim YJ, Shim J, Sung JM, Han ME, Kang DW, Kim JY, Choi BW, Chang HJ. Coronary artery calcium scoring does not add prognostic value to standard 64-section CT angiography protocol in low-risk patients suspected of having coronary artery disease. Radiology. 2011; 259:92–99.
17. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, OReilly MG, Winters WL, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Committee to Update the 1997 Exercise Testing Guidelines. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002; 40:1531–1540.
18. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002; 346:793–801.
19. Gibbons RJ, Balady GJ, Beasley JW, Bricker JT, Duvernoy WF, Froelicher VF, Mark DB, Marwick TH, McCallister BD, Thompson PD Jr, Winters WL, Yanowitz FG, Ritchie JL, Gibbons RJ, Cheitlin MD, Eagle KA, Gardner TJ, Garson A Jr, Lewis RP, ORourke RA, Ryan TJ. ACC/AHA Guidelines for Exercise Testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol. 1997; 30:260–311.
20. Mark DB, Hlatky MA, Harrell FE Jr, Lee KL, Califf RM, Pryor DB. Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med. 1987; 106:793–800.
21. Hadamitzky M, Freissmuth B, Meyer T, Hein F, Kastrati A, Martinoff S, Schömig A, A, Hausleiter J. Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging. 2009; 2:404–411.
22. Hadamitzky M, Distler R, Meyer T, Hein F, Kastrati A, Martinoff S, Schömig A, Hausleiter J. Prognostic value of coronary computed tomographic angiography in comparison with calcium scoring and clinical risk scores. Circ Cardiovasc Imaging. 2011; 4:16–23.
23. Hachamovitch R, Nutter B, Hlatky MA, Shaw LJ, Ridner ML, Dorbala S, Beanlands RS, Chow BJ, Branscomb E, Chareonthaitawee P, Weigold WG, Voros S, Abbara S, Yasuda T, Jacobs JE, Lesser J, Berman DS, Thomson LE, Raman S, Heller GV, Schussheim A, Brunken R, Williams KA, Farkas S, Delbeke D, Schoepf UJ, Reichek N, Rabinowitz S, Sigman SR, Patterson R, Corn CR, White R, Kazerooni E, Corbett J, Bokhari S, Machac J, Guarneri E, Borges-Neto S, Millstine JW, Caldwell J, Arrighi J, Hoffmann U, Budoff M, Lima J, Johnson JR, Johnson B, Gaber M, Williams JA, Foster C, Hainer J, Di Carli MF. Patient management after noninvasive cardiac imaging results from SPARC (Study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease). J Am Coll Cardiol. 2012; 59:462–474.
24. Gibson RS, Beller GA. Should exercise electrocardiographic testing be replaced by radioisotope methods. Cardiovasc Clin. 1983; 13:1–31.
25. Podrid PJ, Graboys TB, Lown B. Prognosis of medically treated patients with coronary-artery disease with profound ST-segment depression during exercise testing. N Engl J Med. 1981; 305:1111–1116.
26. Froelicher VF Jr, Thomas MM, Pillow C, Lancaster MC. Epidemiologic study of asymptomatic men screened by maximal treadmill testing for latent coronary artery disease. Am J Cardiol. 1974; 34:770–776.
27. Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR, Blumenthal RS. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA. 2003; 290:1600–1607.
28. Li S, Liu J, Luo Y, Peng L, Ni Q, Wu H, Wang C, Chen L, Dong R, Zhu J. Diagnostic accuracy of noninvasive coronary angiography with 320-slice computed tomography in the clinical routine: results from four-year clinical registry at a single center. Int J Cardiol. 2013; 168:5035–5036.
29. Chang HJ, Chung N. Clinical perspective of coronary computed tomographic angiography in diagnosis of coronary artery disease. Circ J. 2011; 75:246–252.
30. Fujimoto S, Kondo T, Kodama T, Orihara T, Sugiyama J, Kondo M, Endo A, Fukazawa H, Nagaoka H, Oida A, Ikeda T, Yamazaki J, Takase S, Narula J. Coronary computed tomography angiography-based coronary risk stratification in subjects presenting with no or atypical symptoms. Circ J. 2012; 76:2419–2425.
31. Dewey M, Dübel HP, Schink T, Baumann G, Hamm B. Head-to-head comparison of multislice computed tomography and exercise electrocardiography for diagnosis of coronary artery disease. Eur Heart J. 2007; 28:2485–2490.
32. Dedic A, Genders TS, Ferket BS, Galema TW, Mollet NR, Moelker A, Hunink MG, de Feyter PJ, Nieman K. Stable angina pectoris: head-to-head comparison of prognostic value of cardiac CT and exercise testing. Radiology. 2011; 261:428–436.
33. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003; 228:826–833.
34. Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T, Serruys PW, Krestin GP, de Feyter PJ. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112:2318–2323.
35. Cho I, Chang HJ, Sung JM, Pencina MJ, Lin FY, Dunning AM, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Callister TQ, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Maffei E, Cademartiri F, Kaufmann P, Shaw LJ, Raff GL, Chinnaiyan KM, Villines TC, Cheng V, Nasir K, Gomez M, Min JK. CONFIRM Investigators. Coronary computed tomographic angiography and risk of all-cause mortality and nonfatal myocardial infarction in subjects without chest pain syndrome from the CONFIRM Registry (coronary CT angiography evaluation for clinical outcomes: an international multicenter registry). Circulation. 2012; 126:304–313.
36. Muhlestein JB, Lappé DL, Lima JA, Rosen BD, May HT, Knight S, Bluemke DA, Towner SR, Le V, Bair TL, Vavere AL, Anderson JL. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014; 312:2234–2243.
37. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, Reiser MF. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol. 2002; 12:1081–1086.
38. Nishime EO, Cole CR, Blackstone EH, Pashkow FJ, Lauer MS. Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA. 2000; 284:1392–1398.
39. Marwick TH, Case C, Vasey C, Allen S, Short L, Thomas JD. Prediction of mortality by exercise echocardiography: a strategy for combination with the duke treadmill score. Circulation. 2001; 103:2566–2571.
Full Text Links
  • JCU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr