Clin Endosc.  2014 Nov;47(6):504-508. 10.5946/ce.2014.47.6.504.

Colon Cancer Screening with Image-Enhanced Endoscopy

Affiliations
  • 1Division of Gastroenterology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea. kopa9445@schmc.ac.kr

Abstract

Colorectal cancer (CRC) is a major cause of cancer mortality worldwide, and this has led to an increased use of screening colonoscopy. This screening has resulted in long-term risk reduction in asymptomatic individuals. However, endoscopists may fail to detect advanced adenomas or colon cancer during screening. The reasons that adenomas or cancers are missed are thought to be associated with the location of the lesions or the skills of the endoscopist. To address the limitations of white light endoscopy (WLE) for adenoma detection, advanced endoscopic images have recently been used. Image-enhanced endoscopies (IEEs), including the use of topical dyes, optical filtering, and ultramagnification, allow for gastrointestinal lesion analysis. Many studies have compared the adenoma detection rate (ADR) obtained by using WLE and IEE, but with different results. IEE can be used to help the endoscopist to improve their ADR in screening colonoscopy. This review examines the possible roles of image-enhanced colonoscopy in CRC screening.

Keyword

Image enhancement; Screening colonoscopy; Adenoma detection rate

MeSH Terms

Adenoma
Colonic Neoplasms*
Colonoscopy
Colorectal Neoplasms
Coloring Agents
Endoscopy*
Image Enhancement
Mass Screening*
Mortality
Risk Reduction Behavior
Coloring Agents

Figure

  • Fig. 1 A superficial elevated flat neoplasm detected on white light endoscopy (A) and chromoendoscopy with indigo carmine (B).

  • Fig. 2 White light endoscopic image (A) small polyp detected on narrow band imaging (B, C).


Reference

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010; 127:2893–2917. PMID: 21351269.
Article
2. Jung KW, Park S, Kong HJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2008. Cancer Res Treat. 2011; 43:1–11. PMID: 21509157.
Article
3. Winawer SJ, Zauber AG, Ho MN, et al. The National Polyp Study Workgroup. Prevention of colorectal cancer by colonoscopic polypectomy. N Engl J Med. 1993; 329:1977–1981. PMID: 8247072.
Article
4. Rex DK, Bond JH, Winawer S, et al. Multi-Society Task Force on Colorectal Cancer. Quality in the technical performance of colonoscopy and the continuous quality improvement process for colonoscopy: recommendations of the U.S. Am J Gastroenterol. 2002; 97:1296–1308. PMID: 12094842.
5. van Rijn JC, Reitsma JB, Stoker J, Bossuyt PM, van Deventer SJ, Dekker E. Polyp miss rate determined by tandem colonoscopy: a systematic review. Am J Gastroenterol. 2006; 101:343–350. PMID: 16454841.
Article
6. Imperiale TF, Glowinski EA, Juliar BE, Azzouz F, Ransohoff DF. Variation in polyp detection rates at screening colonoscopy. Gastrointest Endosc. 2009; 69:1288–1295. PMID: 19481649.
Article
7. Kaminski MF, Regula J, Kraszewska E, et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010; 362:1795–1803. PMID: 20463339.
Article
8. Kaltenbach T, Sano Y, Friedland S, Soetikno R. American Gastroenterological Association. American Gastroenterological Association (AGA) Institute technology assessment on image-enhanced endoscopy. Gastroenterology. 2008; 134:327–340. PMID: 18061178.
Article
9. Gono K, Obi T, Yamaguchi M, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004; 9:568–577. PMID: 15189095.
Article
10. Kaltenbach T, Soetikno R. Image-enhanced endoscopy is critical in the detection, diagnosis, and treatment of non-polypoid colorectal neoplasms. Gastrointest Endosc Clin N Am. 2010; 20:471–485. PMID: 20656245.
Article
11. Johanson JF. Practicality of high-resolution chromoendoscopy during routine screening colonoscopy. Gastrointest Endosc. 2006; 63:829–830. PMID: 16650547.
Article
12. Brown SR, Baraza W. Chromoscopy versus conventional endoscopy for the detection of polyps in the colon and rectum. Cochrane Database Syst Rev. 2010; (10):CD006439. PMID: 20927746.
Article
13. Pohl J, Schneider A, Vogell H, Mayer G, Kaiser G, Ell C. Pancolonic chromoendoscopy with indigo carmine versus standard colonoscopy for detection of neoplastic lesions: a randomised two-centre trial. Gut. 2011; 60:485–490. PMID: 21159889.
Article
14. Togashi K, Hewett DG, Radford-Smith GL, Francis L, Leggett BA, Appleyard MN. The use of indigocarmine spray increases the colonoscopic detection rate of adenomas. J Gastroenterol. 2009; 44:826–833. PMID: 19448968.
Article
15. Hashimoto K, Higaki S, Nishiahi M, Fujiwara K, Gondo T, Sakaida I. Does chromoendoscopy improve the colonoscopic adenoma detection rate? Hepatogastroenterology. 2010; 57:1399–1404. PMID: 21443093.
16. Kahi CJ, Anderson JC, Waxman I, et al. High-definition chromocolonoscopy vs. high-definition white light colonoscopy for average-risk colorectal cancer screening. Am J Gastroenterol. 2010; 105:1301–1307. PMID: 20179689.
Article
17. Pasha SF, Leighton JA, Das A, et al. Comparison of the yield and miss rate of narrow band imaging and white light endoscopy in patients undergoing screening or surveillance colonoscopy: a meta-analysis. Am J Gastroenterol. 2012; 107:363–370. PMID: 22186978.
Article
18. Dinesen L, Chua TJ, Kaffes AJ. Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest Endosc. 2012; 75:604–611. PMID: 22341105.
Article
19. van den Broek FJ, Reitsma JB, Curvers WL, Fockens P, Dekker E. Systematic review of narrow-band imaging for the detection and differentiation of neoplastic and nonneoplastic lesions in the colon (with videos). Gastrointest Endosc. 2009; 69:124–135. PMID: 19111693.
Article
20. Matsuda T, Saito Y, Fu KI, et al. Does autofluorescence imaging videoendoscopy system improve the colonoscopic polyp detection rate?: a pilot study. Am J Gastroenterol. 2008; 103:1926–1932. PMID: 18647285.
21. Pohl J, Lotterer E, Balzer C, et al. Computed virtual chromoendoscopy versus standard colonoscopy with targeted indigocarmine chromoscopy: a randomised multicentre trial. Gut. 2009; 58:73–78. PMID: 18838485.
Article
22. Jaramillo E, Watanabe M, Slezak P, Rubio C. Flat neoplastic lesions of the colon and rectum detected by high-resolution video endoscopy and chromoscopy. Gastrointest Endosc. 1995; 42:114–122. PMID: 7590045.
Article
23. Farraye FA, Odze RD, Eaden J, Itzkowitz SH. AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010; 138:746–774. PMID: 20141809.
Article
24. Rutter MD, Saunders BP, Schofield G, Forbes A, Price AB, Talbot IC. Pancolonic indigo carmine dye spraying for the detection of dysplasia in ulcerative colitis. Gut. 2004; 53:256–260. PMID: 14724160.
Article
25. Subramanian V, Mannath J, Ragunath K, Hawkey CJ. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Aliment Pharmacol Ther. 2011; 33:304–312. PMID: 21128987.
Article
26. Dekker E, van den Broek FJ, Reitsma JB, et al. Narrow-band imaging compared with conventional colonoscopy for the detection of dysplasia in patients with longstanding ulcerative colitis. Endoscopy. 2007; 39:216–221. PMID: 17385106.
Article
27. van den Broek FJ, Fockens P, van Eeden S, et al. Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut. 2008; 57:1083–1089. PMID: 18367559.
Article
28. Lecomte T, Cellier C, Meatchi T, et al. Chromoendoscopic colonoscopy for detecting preneoplastic lesions in hereditary nonpolyposis colorectal cancer syndrome. Clin Gastroenterol Hepatol. 2005; 3:897–902. PMID: 16234028.
Article
29. Hurlstone DP, Karajeh M, Cross SS, et al. The role of high-magnification-chromoscopic colonoscopy in hereditary nonpolyposis colorectal cancer screening: a prospective "back-to-back" endoscopic study. Am J Gastroenterol. 2005; 100:2167–2173. PMID: 16181364.
Article
30. Hüneburg R, Lammert F, Rabe C, et al. Chromocolonoscopy detects more adenomas than white light colonoscopy or narrow band imaging colonoscopy in hereditary nonpolyposis colorectal cancer screening. Endoscopy. 2009; 41:316–322. PMID: 19340735.
Article
31. East JE, Suzuki N, Stavrinidis M, Guenther T, Thomas HJ, Saunders BP. Narrow band imaging for colonoscopic surveillance in hereditary non-polyposis colorectal cancer. Gut. 2008; 57:65–70. PMID: 17682000.
Article
32. Ramsoekh D, Haringsma J, Poley JW, et al. A back-to-back comparison of white light video endoscopy with autofluorescence endoscopy for adenoma detection in high-risk subjects. Gut. 2010; 59:785–793. PMID: 20551463.
Article
Full Text Links
  • CE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr