Lab Anim Res.  2011 Jun;27(2):77-84. 10.5625/lar.2011.27.2.77.

Animal Models of Periventricular Leukomalacia

Affiliations
  • 1College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea. solar93@cbu.ac.kr
  • 2Department of Pediatrics, Soonchunhyang University Hospital, Seoul, Republic of Korea.
  • 3College of Medicine, Hallym University, Chuncheon, Republic of Korea.
  • 4Department of Beauty Industry, Seoul University of Venture & Information, Seoul, Republic of Korea.
  • 5Department of Medicine, University of British Columbia Hospital, Vancouver, Canada.

Abstract

Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics.

Keyword

Periventricular leukomalacia; white matter injury; cerebral palsy; hypoperfusion (hypoxia-ischemia); inflammation (lipopolysaccharide); premyelinating oligodendrocytes

MeSH Terms

Animals
Brain
Brain Injuries
Carotid Arteries
Central Nervous System
Cerebral Palsy
Humans
Infant, Newborn
Inflammation
Leukomalacia, Periventricular
Models, Animal
Neurotoxins
Oligodendroglia
Oxygen
Rats
Rodentia
Neurotoxins
Oxygen

Figure

  • Figure 1 Developmental stage-dependent periventricular leukomalacia of rodents induced by hypoxia-ischemia. PND, post-natal day; WMI, white matter injury.


Reference

1. Hagberg H, Peebles D, Mallard C. Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev. 2002; 8(1):30–38. PMID: 11921384.
Article
2. Nelson KB, Willoughby RE. Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol. 2000; 13(2):133–139. PMID: 10987569.
Article
3. Deng W, Pleasure J, Pleasure D. Progress in periventricular leukomalacia. Arch Neurol. 2008; 65(10):1291–1295. PMID: 18852342.
Article
4. Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology. 2002; 22(3):106–132. PMID: 12416551.
Article
5. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009; 8(1):110–124. PMID: 19081519.
Article
6. Wang X, Rousset CI, Hagberg H, Mallard C. Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med. 2006; 11(5):343–353. PMID: 16793357.
Article
7. de Vries LS, Eken P, Groenendaal F, van Haastert IC, Meiners LC. Correlation between the degree of periventricular leukomalacia diagnosed using cranial ultrasound and MRI later in infancy in children with cerebral palsy. Neuropediatrics. 1993; 24(5):263–268. PMID: 8309515.
Article
8. Krägeloh-Mann I, Petersen D, Hagberg G, Vollmer B, Hagberg B, Michaelis R. Bilateral spastic cerebral palsy-MRI pathology and origin. Analysis from a representative series of 56 cases. Dev Med Child Neurol. 1995; 37(5):379–397. PMID: 7768338.
Article
9. Whitaker AH, Van Rossem R, Feldman JF, Schonfeld IS, Pinto-Martin JA, Tore C, Shaffer D, Paneth N. Psychiatric outcomes in low-birth-weight children at age 6 years: relation to neonatal cranial ultrasound abnormalities. Arch Gen Psychiatry. 1997; 54(9):847–856. PMID: 9294376.
10. Grether JK, Nelson KB. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA. 1997; 278(3):207–211. PMID: 9218666.
Article
11. Banker BQ, Larroche JC. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol. 1962; 7:386–410. PMID: 13966380.
12. Clark DB, Anderson GW. Correlations of complications of labor with lesions in the brains of neonates. J Neuropathol Exp Neurol. 1961; 20:275–278. PMID: 13693825.
13. Leech RW, Alvord EC Jr. Morphologic variations in periventricular leukomalacia. Am J Pathol. 1974; 74(3):591–602. PMID: 4814903.
14. Golden JA, Gilles FH, Rudelli R, Leviton A. Frequency of neuropathological abnormalities in very low birth weight infants. J Neuropathol Exp Neurol. 1997; 56(5):472–478. PMID: 9143259.
Article
15. Gilles FH, Leviton A, Golden JA, Paneth N, Rudelli RD. Groups of histopathologic abnormalities in brains of very low birthweight infants. J Neuropathol Exp Neurol. 1998; 57(11):1026–1034. PMID: 9825939.
Article
16. Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ. Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol. 1999; 46(5):755–760. PMID: 10553993.
Article
17. Leviton A, Gilles F. Ventriculomegaly, delayed myelination, white matter hypoplasia, and "periventricular" leukomalacia: how are they related? Pediatr Neurol. 1996; 15(2):127–136. PMID: 8888047.
Article
18. Skranes JS, Nilsen G, Smevik O, Vik T, Brubakk AM. Cerebral MRI of very low birth weight children at 6 years of age compared with the findings at 1 year. Pediatr Radiol. 1998; 28(6):471–475. PMID: 9634467.
Article
19. Kinney HC, Back SA. Human oligodendroglial development: relationship to periventricular leukomalacia. Semin Pediatr Neurol. 1998; 5(3):180–189. PMID: 9777676.
Article
20. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci. 2001; 21(4):1302–1312. PMID: 11160401.
Article
21. Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J Neuropathol Exp Neurol. 1997; 56(3):219–235. PMID: 9056536.
22. Deguchi K, Oguchi K, Takashima S. Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol. 1997; 16(4):296–300. PMID: 9258961.
Article
23. Dammann O, Hagberg H, Leviton A. Is periventricular leukomalacia an axonopathy as well as an oligopathy? Pediatr Res. 2001; 49(4):453–457. PMID: 11264425.
Article
24. Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, Chi JG. High expression of tumor necrosis factor-α and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol. 1997; 177(2):406–411. PMID: 9290459.
Article
25. Dammann O, Durum S, Leviton A. Do white cells matter in white matter damage? Trends Neurosci. 2001; 24(6):320–324. PMID: 11356502.
Article
26. Volpe JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol. 1998; 5(3):135–151. PMID: 9777673.
Article
27. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997; 42(1):1–8. PMID: 9212029.
Article
28. Takashima S, Tanaka K. Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch Neurol. 1978; 35(1):11–16. PMID: 619867.
Article
29. Nakamura Y, Okudera T, Hashimoto T. Vascular architecture in white matter of neonates: its relationship to periventricular leukomalacia. J Neuropathol Exp Neurol. 1994; 53(6):582–589. PMID: 7964899.
30. Pryds O. Control of cerebral circulation in the high-risk neonate. Ann Neurol. 1991; 30(3):321–329. PMID: 1952819.
Article
31. Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ. Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci. 1993; 13(4):1441–1453. PMID: 8096541.
Article
32. Fern R, Möller T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci. 2000; 20(1):34–42. PMID: 10627578.
Article
33. Rivkin MJ, Flax J, Mozell R, Osathanondh R, Volpe JJ, Villa-Komaroff L. Oligodendroglial development in human fetal cerebrum. Ann Neurol. 1995; 38(1):92–101. PMID: 7611731.
Article
34. Back SA, Volpe JJ. Cellular and molecular pathogenesis of periventricular white matter injury. Ment Retard Dev Disabil Res Rev. 1997; 3(1):96–107.
Article
35. Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol. 2002; 61(2):197–211. PMID: 11853021.
Article
36. Yoon BH, Romero R, Yang SH, Jun JK, Kim IO, Choi JH, Syn HC. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996; 174(5):1433–1440. PMID: 9065108.
Article
37. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, Kim IO. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997; 177(1):19–26. PMID: 9240577.
Article
38. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008; 93(2):F153–F161. PMID: 18296574.
Article
39. Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, Volpe JJ, Kinney HC. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropath Exp Neurol. 2003; 62(5):441–450. PMID: 12769184.
Article
40. Back SA, Luo NL, Mallinson RA, O'Malley JP, Wallen LD, Frei B, Morrow JD, Petito CK, Roberts CT Jr, Murdoch GH, Montine TJ. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol. 2005; 58(1):108–120. PMID: 15984031.
41. Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ, Jensen FE. Developmental regulation of AMPA receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J Comp Neurol. 2006; 497(1):61–77. PMID: 16680761.
42. Folkerth RD, Keefe RJ, Haynes RL, Trachtenberg FL, Volpe JJ, Kinney HC. Interferon-γ expression in periventricular leukomalacia in the human brain. Brain Pathol. 2004; 14(3):265–274. PMID: 15446581.
Article
43. Folkerth RD, Haynes RL, Borenstein NS, Belliveau RA, Trachtenberg F, Rosenberg PA, Volpe JJ, Kinney HC. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol. 2004; 63(9):990–999. PMID: 15453097.
Article
44. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA. 2005; 102(28):9936–9941. PMID: 15998743.
Article
45. Buntinx M, Moreels M, Vandenabeele F, Lambrichts I, Raus J, Seels P, Stinissen P, Ameloot M. Cytokine-induced cell death in human oligodendroglial cell lines: I. Synergistic effects of IFN-γ and TNF-α on apoptosis. J Neurosci Res. 2004; 76(6):834–845. PMID: 15160395.
Article
46. Agresti C, D'Urso D, Levi G. Reversible inhibitory effects of interferon-γ and tumour necrosis factor-α on oligodendroglial lineage cell proliferation and differentiation in vitro. Eur J Neurosci. 1996; 8(6):1106–1116. PMID: 8752580.
47. Andrews T, Zhang P, Bhat NR. TNFα potentiates IFNγ-induced cell death in oligodendrocyte progenitors. J Neurosci Res. 1998; 54(5):574–583. PMID: 9843148.
Article
48. Pang Y, Cai Z, Rhodes PG. Effect of tumor necrosis factor-á on developing optic nerve oligodendrocytes in culture. J Neurosci Res. 2005; 80(2):226–234. PMID: 15765524.
Article
49. Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci. 1998; 18(16):6241–6253. PMID: 9698317.
Article
50. Desilva TM, Kinney HC, Borenstein NS, Trachtenberg FL, Irwin N, Volpe JJ, Rosenberg PA. The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J Comp Neurol. 2007; 501(6):879–890. PMID: 17311320.
Article
51. Káradóttir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience. 2007; 145(4):1426–1438. PMID: 17049173.
Article
52. Manning SM, Talos DM, Zhou C, Selip DB, Park HK, Park CJ, Volpe JJ, Jensen FE. NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J Neurosci. 2008; 28(26):6670–6678. PMID: 18579741.
Article
53. Haynes RL, Borenstein NS, Desilva TM, Folkerth RD, Liu LG, Volpe JJ, Kinney HC. Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol. 2005; 484(2):156–167. PMID: 15736232.
Article
54. Rakic S, Zecevic N. Programmed cell death in the developing human telencephalon. Eur J Neurosci. 2000; 12(8):2721–2734. PMID: 10971615.
Article
55. Rezaie P, Male D. Differentiation, ramification and distribution of microglia within the central nervous system examined. Neuroembryology. 2002; 1(1):29–43.
Article
56. Hamilton SP, Rome LH. Stimulation of in vitro myelin synthesis by microglia. Glia. 1994; 11(4):326–335. PMID: 7960036.
57. Rezaie P, Dean A, Male D, Ulfig N. Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex. 2005; 15(7):938–949. PMID: 15483047.
Article
58. Rivest S. Molecular insights on the cerebral innate immune system. Brain Behav Immun. 2003; 17(1):13–19. PMID: 12615045.
Article
59. Monier A, Evrard P, Gressens P, Verney C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol. 2006; 499(4):565–582. PMID: 17029271.
Article
60. Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol. 2006; 497(2):199–208. PMID: 16705680.
Article
61. Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD. Peroxynitrite mediates neurotoxicity of amyloid β-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci. 2002; 22(9):3484–3492. PMID: 11978825.
62. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 2003; 100(14):8514–8519. PMID: 12824464.
Article
63. Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sébire G. Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci. 2005; 27(2-4):134–142. PMID: 16046847.
Article
64. Field NT, Newton ER, Kagan-Hallet K, Peairs WA. Perinatal effects of Gardnerella vaginalis deciduitis in the rabbit. Am J Obstet Gynecol. 1993; 168(3 Pt 1):988–994. PMID: 8456914.
65. Marret S, Mukendi R, Gadisseux JF, Gressens P, Evrard P. Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol. 1995; 54(3):358–370. PMID: 7745435.
66. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res. 2000; 47(1):64–72. PMID: 10625084.
Article
67. Debillon T, Gras-Leguen C, Vérielle V, Winer N, Caillon J, Rozé JC, Gressens P. Intrauterine infection induces programmed cell death in rabbit periventricular white matter. Pediatr Res. 2000; 47(6):736–742. PMID: 10832730.
Article
68. Follett PL, Rosenberg PA, Volpe JJ, Jensen FE. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci. 2000; 20(24):9235–9241. PMID: 11125001.
Article
69. Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur J Neurosci. 2001; 13(6):1101–1106. PMID: 11285007.
Article
70. Jelinski SE, Yager JY, Juurlink BH. Preferential injury of oligodendroblasts by a short hypoxic-ischemic insult. Brain Res. 1999; 815(1):150–153. PMID: 9974135.
71. Matsuda T, Okuyama K, Cho K, Hoshi N, Matsumoto Y, Kobayashi Y, Fujimoto S. Induction of antenatal periventricular leukomalacia by hemorrhagic hypotension in the chronically instrumented fetal sheep. Am J Obstet Gynecol. 1999; 181(3):725–730. PMID: 10486490.
Article
72. Uehara H, Yoshioka H, Kawase S, Nagai H, Ohmae T, Hasegawa K, Sawada T. A new model of white matter injury in neonatal rats with bilateral carotid artery occlusion. Brain Res. 1999; 837(1-2):213–220. PMID: 10434005.
Article
73. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci. 2002; 22(2):455–463. PMID: 11784790.
Article
74. McDonald JW, Silverstein FS, Johnston MV. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res. 1988; 459(1):200–203. PMID: 3048538.
75. Hagberg H, Bona E, Gilland E, Puka-Sundvall M. Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl. 1997; 422:85–88. PMID: 9298801.
Article
76. Reddy K, Mallard C, Guan J, Marks K, Bennet L, Gunning M, Gunn A, Gluckman P, Williams C. Maturational change in the cortical response to hypoperfusion injury in the fetal sheep. Pediatr Res. 1998; 43(5):674–682. PMID: 9585015.
Article
77. Muse ED, Jurevics H, Toews AD, Matsushima GK, Morell P. Parameters related to lipid metabolism as markers of myelination in mouse brain. J Neurochem. 2001; 76(1):77–86. PMID: 11145980.
Article
78. Tan S, Venkatasubramanian PN, Derrick M. In utero hypoxia-ischemia results in white matter injury and death of oligodendrocyte precursors in fetal rabbits. Pediatr Res. 2001; 49:434A.
79. Yoshioka H, Goma H, Nioka S, Ochi M, Miyake H, Zaman A, Masumura M, Sawada T, Chance B. Bilateral carotid artery occlusion causes periventricular leukomalacia in neonatal dogs. Brain Res Dev Brain Res. 1994; 78(2):273–278.
Article
80. Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981; 9(2):131–141. PMID: 7235629.
Article
81. Skoff RP, Bessert DA, Barks JD, Song D, Cerghet M, Silverstein FS. Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Int J Dev Neurosci. 2001; 19(2):197–208. PMID: 11255033.
Article
82. Levison SW, Rothstein RP, Romanko MJ, Snyder MJ, Meyers RL, Vannucci SJ. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells. Dev Neurosci. 2001; 23(3):234–247. PMID: 11598326.
Article
83. Park D, Kim TK, Choi YJ, Lee SH, Kang H, Yang YH, Bae DK, Yang G, Kim YB. Experimental models of cerebral palsy in infant rats. Lab Anim Res. 2010; 26(4):345–351.
Article
84. Sheldon RA, Chuai J, Ferriero DM. A rat model for hypoxic-ischemic brain damage in very premature infants. Biol Neonate. 1996; 69(5):327–341. PMID: 8790911.
Article
85. Cai Z, Pang Y, Xiao F, Rhodes PG. Chronic ischemia preferentially causes white matter injury in the neonatal rat brain. Brain Res. 2001; 898(1):126–135. PMID: 11292456.
Article
86. Derrick M, He J, Brady E. A cerebral palsy phenotype in newborn rabbits following antenatal hypoxia-ischemia to preterm fetuses. Pediatr Res. 2001; 49:432A.
87. Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, Chi JG. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol. 1997; 177(4):797–802. PMID: 9369822.
Article
88. Davies JK, Shikes RH, Sze CI, Leslie KK, McDuffie RS Jr, Romero R, Gibbs RS. Histologic inflammation in the maternal and fetal compartments in a rabbit model of acute intra-amniotic infection. Am J Obstet Gynecol. 2000; 183(5):1088–1093. PMID: 11084546.
Article
89. Kopp EB, Medzhitov R. The Toll-receptor family and control of innate immunity. Curr Opin Immunol. 1999; 11(1):13–18. PMID: 10047546.
Article
90. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000; 406(6797):782–787. PMID: 10963608.
Article
91. Gilles FH, Averill DR Jr, Kerr CS. Neonatal endotoxin encephalopathy. Ann Neurol. 1977; 2(1):49–56. PMID: 409336.
Article
92. Young RS, Yagel SK, Towfighi J. Systemic and neuropathologic effects of E. coli endotoxin in neonatal dogs. Pediatr Res. 1983; 17(5):349–353. PMID: 6343996.
Article
93. Young RS, Hernandez MJ, Yagel SK. Selective reduction of blood flow to white matter during hypotension in newborn dogs: a possible mechanism of periventricular leukomalacia. Ann Neurol. 1982; 12(5):445–448. PMID: 7181450.
94. Ando M, Takashima S, Mito T. Endotoxin, cerebral blood flow, amino acids and brain damage in young rabbits. Brain Dev. 1988; 10(6):365–370. PMID: 3064628.
Article
95. Duncan JR, Cock ML, Scheerlinck JP, Westcott KT, McLean C, Harding R, Rees SM. White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res. 2002; 52(6):941–949. PMID: 12438674.
Article
96. Hagberg H, Eklind S, Hallin U. Expression of cytokines and chemokines in the immature white and gray matter in response to hypoxia-ischemia or endotoxin. J Cereb Blood Flow Metab. 1999; 19:S312.
97. Tahraoui SL, Marret S, Bodénant C, Leroux P, Dommergues MA, Evrard P, Gressens P. Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol. 2001; 11(1):56–71. PMID: 11145204.
Article
98. Lawson LJ, Perry VH. The unique characteristics of inflammatory responses in mouse brain are acquired during postnatal development. Eur J Neurosci. 1995; 7(7):1584–1595. PMID: 7551185.
Article
99. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000; 20(16):6309–6316. PMID: 10934283.
Article
100. Palmer C, Roberts RL, Towfighi J. Endotoxin pretreatment protects neonatal rats from hypoxic ischemic brain injury. Pediatr Res. 2001; 49:436A.
101. Nelson KB, Willoughby RE. Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol. 2000; 13(2):133–139. PMID: 10987569.
Article
102. Wu YW, Colford JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA. 2000; 284(11):1417–1424. PMID: 10989405.
Article
103. Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol. 1998; 44(4):665–675. PMID: 9778266.
Article
104. Nelson KB, Grether JK. Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol. 1998; 179(2):507–513. PMID: 9731861.
Article
Full Text Links
  • LAR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr