J Korean Acad Prosthodont.  2011 Jan;49(1):16-21. 10.4047/jkap.2011.49.1.16.

Bioactivity of precalcified nanotubular TiO2 layer on Ti-6Al-7Nb alloy

Affiliations
  • 1Department of Prosthodontics, School of Dentistry, Chonbuk National University, Jeonju, Korea. dentsjm@hanmail.net

Abstract

PURPOSE
The purpose of this study was to investigate the bioactivity of precalcified nanotubular TiO2 layer on Ti-6Al-7Nb alloy.
MATERIALS AND METHODS
Anodic oxidation was carried out at a potential of 20 V and current density of 20 mA/cm2 for 1 hour. The glycerol solution containing 1 wt% NH4F and 20 wt% deionized water was used as an electrolyte. Precalcification treatment was obtained by soaking in Na2HPO4 solution at 80degrees C for 30 minutes followed by soaking in saturated Ca(OH)2 solution at 100degrees C for 30 minutes, followed by heat treatment at 500degrees C for 2 hours. To evaluate the activity of precalcified nanotubular TiO2 layer, specimens were immersed in a simulated body fluid with pH 7.4 at 36.5degrees C for 10 days.
RESULTS
1. Nanotubular TiO2 layer showed the highly ordered dense structure by interposing small diameter nanotubes between large ones, the shape of nanotubes was enlarged as going down. 2. The mean length of nanotubes was 517.0 +/- 23.2 nm innm glycerol solution containing 1 wt% NH4F and 20 wt% H2O at 20 V for 1 hour. 3. The bioactivity of Ti-6Al-7Nb alloy was improved with formation of nanotubular TiO2 layer and precalcification treatment in 80degrees C 0.5 M Na2HPO4 and saturated 100degrees C Ca(OH)2 solution.
CONCLUSION
Bioactivity of precalcified nanotubular TiO2 layer on Ti-6Al-7Nb alloy was improved.

Keyword

Ti-6Al-7Nb alloy; Nanotubular TiO2; Precalcification treatment

MeSH Terms

Alloys
Body Fluids
Glycerol
Hot Temperature
Hydrogen-Ion Concentration
Nanotubes
Titanium
Water
Alloys
Glycerol
Titanium
Water

Figure

  • Fig. 1. FE-SEM images of nanotubular TiO2 layer formed at 20 V for 1 h in glycerol solution containing 20 wt% H2O and 1 wt% NH4F. A: top view, B: fractured surface.

  • Fig. 2. FE-SEM images of precalcified specimens immersed in SBF. A: 5 day immersion, B: 10 day immersion.


Reference

1.Kasemo B. Lausmaa J. Metal selection and surface characteristics. In: Bra®nemark PI, Zarb GA, Albrektsson T (eds), Tissue-integrated prostheses, Osseointegrated in clinical dentistry. Quintessence: Chicago;1985. p. 99–116.
2.Hanawa T., Ukai H., Murakami K., Asaoka K. Structure of Surface-Modified Layers of Calcium-Ion-Implanted Ti-6Al-4V and Ti-56Ni. Mater Trans JIM. 1995. 36:438–44.
3.Hanawa T., Asami K., Asaoka K. Microdissolution of calcium ions from calcium-ion-implanted titanium. Corros Sci. 1996. 38:1579–94.
Article
4.Wen HB., Wolke JG., de Wijn Jr., Liu Q., Cui FZ., de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials. 1997. 18:1471–8.
Article
5.Cheang P., Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials. 1996. 17:537–44.
Article
6.De Andrade MC., Sader MS., Filgueiras MR., Ogasawara T. Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment. J Mater Sci Mater Med. 2000. 11:751–5.
7.Wang J., Layrolle P., Stigter M., de Groot K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials. 2004. 25:583–92.
Article
8.Larsson C., Thomsen P., Aronsson BO., Rodahl M., Lausmaa J., Kasemo B., Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials. 1996. 17:605–16.
Article
9.Kim SW., Yoon IH., Choe HC., Ko YM. Effects of surface roughness on the electrochemical characteristics of cell cultured Ti-6Al-4V alloy. J Korean Res Soc Dent Materials. 2005. 32:303–12.
10.Ishizawa H., Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res. 1995. 29:1071–9.
Article
11.Neupane MP., Kim YK., Park IS., Kim KA., Lee MH., Bae TS. Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles. Surf Interface Anal. 2009. 41:259–63.
Article
12.Ma Q., Li M., Hu Z., Chen Q., Hu W. Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Mater Lett. 2008. 62:3035–8.
Article
13.Rupp F., Scheideler L., Olshanska N., de Wild M., Wieland M., Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A. 2006. 76:323–34.
Article
14.Ellingsen JE., Johansson CB., Wennerberg A., Holme′n A. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants. 2004. 19:659–66.
15.Hirata T., Nakamura T., Takashima F., Maruyama T., Taira M., Takahashi J. Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives. J Oral Rehabil. 2001. 28:773–7.
Article
16.Kuroiwa A., Igarashi Y. Application of pure titanium to metal framework. J Jpn Prosthodont Soc. 1998. 42:547–58.
Article
17.Cai Z., Shafer T., Watanabe I., Nunn ME., Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003. 24:213–8.
Article
18.Iijima D., Yoneyama T., Doi H., Hamanaka H., Kurosaki N. Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses. Biomaterials. 2003. 24:1519–24.
Article
19.Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A. 1996. 213:134–7.
Article
20.Eisenbarth E., Velten D., Mu ¨ller M., Thull R., Breme J. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials. 2004. 25:5705–13.
21.Kaneco S., Chen Y., Westerhoff P., Crittenden JC. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. J Scripta Mat. 2007. 56:373–6.
Article
22.Macak JM., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007. 11:3–18.
Article
23.Beranek R., Hidebrand H., Schmuki P. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes. Electrochem Solid-State Lett. 2003. 6:B12–4.
24.Kunze J., Mu ¨ller L., Macak JM., Greil P., Schmuki P., Mu ¨ller FA. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochimica Acta. 2008. 53:6995–7003.
Article
25.Macak JM., Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochimica Acta. 2006. 52:1258–64.
Article
26.Valota A., LeClere DJ., Skeldon P., Curioni M., Hashimoto T., Berger S., Kunze J., Schmuki P., Thompson GE. Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochimica Acta. 2009. 54:4321–7.
Article
Full Text Links
  • JKAP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr