Korean J Anat.
2006 Apr;39(2):119-128.
Temporal Change of Calbindin-D28k Immunoreactivity in the Dentate Gyrus of Voluntary Running Mouse
- Affiliations
-
- 1Department of Anatomy, College of Medicine, Kyunghee University, Korea. psychan@khu.ac.kr
Abstract
-
Voluntary running is known to dramatically increase the cell proliferation and neurogenesis in the dentate gyrus of the adult mouse hippocampus. However, it is crucial to realize that adding excitatory neurons could result in serious maladaptive outcomes for hippocampal circuit function. To investigate the response of mature granule cells on the increase of cell proliferation during voluntary running, we investigated the temporal change of calbindin-D28k (a marker for mature granule cells) using immunohistochemistry during voluntary running with upregulated neurogenesis. By using immunohistochemsitry for Ki-67 and doublecortin (DCX), we observed that the cell proliferation and differentiation of granule cells increased at 1 week of voluntary running. We found that, at 6 weeks of voluntary running, the cell proliferation and differentiation of granule cells returned to sedentary control levels. On the other hand, calbindin-D28k immunoreactivity decreased in the granular cell layer of the dentate gyrus and CA3 region of hippocampus after 1 week of voluntary running. At 6 weeks of voluntary running, the density of the calbindin-D28k in the granular cell layer and CA3 region was returned to the sedentary control level. These results demonstrate that the cell proliferation and differentiation are increased at early point of voluntary running, and the granule cell activity in the dentate gyrus is temporally changed for response to the increase of cell proliferation and differentiation during voluntary running.