Cancer Res Treat.  2011 Mar;43(1):56-66.

Alpha-Type 1 Polarized Dendritic Cells Loaded with Apoptotic Allogeneic Breast Cancer Cells Can Induce Potent Cytotoxic T Lymphocytes against Breast Cancer

Affiliations
  • 1Department of Surgery, Chonnam National University Hwasun Hospital, Chonnam National University School of Medicine, Hwasun, Korea.
  • 2Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University School of Medicine, Hwasun, Korea. drjejung@chonnam.ac.kr
  • 3Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Chonnam National University School of Medicine, Hwasun, Korea.
  • 4The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea.

Abstract

PURPOSE
Various tumor antigens can be loaded onto dendritic cells (DCs) to induce a potent cytotoxic T lymphocyte (CTL) response in DC-based immunotherapy against breast cancer. However, in the clinical setting, obtaining a sufficient number of autologous tumor cells as a source of tumor antigens is a laborious process. We therefore investigated the feasibility of immunotherapy using breast-cancer-specific CTLs generated in vitro by use of alpha-type 1 polarized DCs (alpha DC1s) loaded with ultraviolet B-irradiated cells of the breast cancer cell line MCF-7.
MATERIALS AND METHODS
alphaDC1s were induced by loading allogeneic tumor antigen generated from the MCF-7 UVB-irradiated breast cancer cell line. Antigen-pulsed alphaDC1s were evaluated by morphological and functional assays, and the breast-cancer-specific CTL response was analyzed by cytotoxic assay.
RESULTS
The alphaDC1s significantly increased the expression of several molecules related to DC maturation without differences according to whether the alphaDC1s were loaded with tumor antigens. The alphaDC1s showed a high production of interleukin-12 both during maturation and after subsequent stimulation with CD40L, which was not significantly affected by loading with tumor antigens. Breast-cancer-specific CTLs against autologous breast cancer cells were successfully induced by alphaDC1s loaded with apoptotic MCF-7 cells.
CONCLUSION
Autologous DCs loaded with an allogeneic breast cancer cell line can generate potent breast-cancer-specific CTL responses. This may be a practical method for cellular immunotherapy in patients with breast cancer.

Keyword

Dendritic cells; Breast neoplasms; Allogeneic; Cytotoxic T lymphocytes; Immunotherapy

MeSH Terms

Antigens, Neoplasm
Breast
Breast Neoplasms
CD40 Ligand
Cell Line
Dendritic Cells
Humans
Immunotherapy
Interleukin-12
Lymphocytes
T-Lymphocytes, Cytotoxic
Antigens, Neoplasm
CD40 Ligand
Interleukin-12

Figure

  • Fig. 1 Schema of the generation of dendritic cells (DCs) in patients with breast cancer in this study. PBMCs, peripheral blood mononuclear cells; D, day; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; poly-I : C, polyinosinic : polycytidylic acid; αDC1, alpha-type 1 polarized DCs; IMDM, Iscove's Modified Dulbecco's medium; FBS, fetal bovine serum; UVB, ultraviolet B.

  • Fig. 2 Phenotypic expression of dendritic cells (DCs). The expressions of several molecules (CD83, CD86 and CCR7) related to DC maturation were significantly higher in the alpha-type 1 polarized DCs (αDC1s) than in the immature DCs (iDCs). However, there were no differences in phenotypic expression between the αDC1s and the αDC1s loaded with apoptotic MCF-7 breast cancer cells. Data are from one representative experiment of four independent experiments.

  • Fig. 3 Efficacy of tumor antigen uptake by dendritic cells (DCs). DCs were loaded with PKH67-labeled UVB-irradiated MCF-7 breast cancer cells (a ratio of 2 : 1) 2 hr after the addition of maturation-inducing cytokines on day 6. Mature DCs were harvested on day 8 and identified by CD11c expression. (A) The tumor antigen uptake of the alpha-type 1 polarized DCs (αDC1s) was measured by the percent of double-positive cells using flow cytometry. (B) After labeling MCF-7 cells with PKH67-GL-Green and DCs with PKH26-GL-Red, cell morphology was observed by using a confocal microscope at an excitation wavelength of 350 nm for DAPI. Apoptotic MCF-7 cells (yellow) were confirmed in the αDC1s.

  • Fig. 4 Comparison of cytokine production by dendritic cells (DCs). Production of interleukin (IL)-12p40, IL-12p70, IL-10 and IL-6 during maturation of the alpha-type 1 polarized DCs (αDC1s) and the αDC1s loaded with apoptotic tumor cells and during re-stimulation with 40L-tranfected J558 cells for 24 hr after maturation. Results, expressed as mean (pg/mL)±standard deviation of triplicate cultures, are from one representative experiment of three. iDCs, immature DCs.

  • Fig. 5 Alpha-type 1 polarized DCs (αDC1s) induce naïve CD4+ T cells to secrete Th1 cytokines. Allogeneic naïve CD4+CD45RA+ T cells were primed with DCs for 5 days and then stimulated with rIL-2. On day 10, the cells were re-stimulated with Dynabeads CD3/CD28 T cell expander for 1 day. (A) Interleukin (IL)-4 and interferon (IFN)-γ levels measured in culture supernatants by enzyme-linked immunosorbent assay. (B) IL-4 and IFN-γ expression by intracellular staining at the single-cell level. The results are one representative experiment of three independent experiments and are expressed as the percent of cytokine-producing cells. iDCs, immature DCs.

  • Fig. 6 Comparison of allogeneic T cell stimulatory capacities of dendritic cells (DCs). In a carboxyfluorescein diacetate succinimidyl ester (CFSE)-based proliferation assay, CFSE-labeled allogeneic CD3+ T cells (20,000 cells/well) were stimulated for 5 days with graded doses of irradiated DCs. Flow cytometry was used to measure the percent of CFSE-proliferated cells. The stimulatory capacity of the alpha-type 1 polarized DCs (αDC1s) was significantly higher in a dose-dependent manner than that of the immature DCs (iDCs), and there was no effect on T cell proliferation by loading of apoptotic tumor cells onto αDC1s. Data are representative histograms of fluorescence-activated cell sorting analysis from one of three independent experiments.

  • Fig. 7 Ezyme-linked immunospot (ELISPOT) assay to measure the interferon (IFN)-γ release of breast-cancer-specific cytotoxic T lymphocytes (CTLs). Autologous CD3+ T cells were stimulated with dendritic cells (DCs) loaded with apoptotic MCF-7 cells two times every 10 days. On day 20, the CTLs were co-cultured with autologous target cells (MCF-7, HLA-A0201+) and irrelevant target cells (T-47D, HLA-A0201- breast cancer cells; PC3, prostate cancer cells; K562, natural killer cell-sensitive chronic myeloid leukemia cells). (A) Number of IFN-γ-secreting cells from CTLs stimulated with the MCF-7-loaded-alpha-type 1 polarized DCs (αDC1s) (A) and the MCF-7-unloaded-αDC1s (B). Anti-major histocompatibility complex (MHC) class I antibodies were used to confirm the MHC class I-restricted recognition of breast-cancer-specific CTLs. Breast cancer cells were isolated from tumor tissue of patients and the CTLs were co-cultured with the breast cancer cells as target cells (C). The ELISPOT data are the mean (±standard deviation) number of IFN-γ-producing cells of triplicate cultures in three independent experiments.


Reference

1. Gloeckler Ries LA, Reichman ME, Lewis DR, Hankey BF, Edwards BK. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist. 2003; 8:541–552. PMID: 14657533.
Article
2. Anderson KS. Tumor vaccines for breast cancer. Cancer Invest. 2009; 27:361–368. PMID: 19358018.
Article
3. Curigliano G, Spitaleri G, Dettori M, Locatelli M, Scarano E, Goldhirsch A. Vaccine immunotherapy in breast cancer treatment: promising, but still early. Expert Rev Anticancer Ther. 2007; 7:1225–1241. PMID: 17892423.
Article
4. Chaudhuri S, Cariappa A, Tang M, Bell D, Haber DA, Isselbacher KJ, et al. Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may represent protective alleles. Proc Natl Acad Sci U S A. 2000; 97:11451–11454. PMID: 11027344.
Article
5. Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 1994; 54:16–20. PMID: 7505195.
6. Jerome KR, Domenech N, Finn OJ. Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA. J Immunol. 1993; 151:1654–1662. PMID: 8393050.
7. Carella AM, Beltrami G, Corsetti MT, Nati S, Musto P, Scalzulli P, et al. Reduced intensity conditioning for allograft after cytoreductive autograft in metastatic breast cancer. Lancet. 2005; 366:318–320. PMID: 16039336.
Article
8. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998; 392:245–252. PMID: 9521319.
Article
9. Reid DC. Dendritic cells and immunotherapy for malignant disease. Br J Haematol. 2001; 112:874–887. PMID: 11298582.
Article
10. Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, et al. Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 2004; 64:5934–5937. PMID: 15342370.
11. Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol. 2008; 84:319–325. PMID: 18426971.
Article
12. Gilewski T, Adluri S, Ragupathi G, Zhang S, Yao TJ, Panageas K, et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin Cancer Res. 2000; 6:1693–1701. PMID: 10815887.
13. Murray JL, Gillogly ME, Przepiorka D, Brewer H, Ibrahim NK, Booser DJ, et al. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res. 2002; 8:3407–3418. PMID: 12429628.
14. Parkhurst MR, Riley JP, Igarashi T, Li Y, Robbins PF, Rosenberg SA. Immunization of patients with the hTERT:540-548 peptide induces peptide-reactive T lymphocytes that do not recognize tumors endogenously expressing telomerase. Clin Cancer Res. 2004; 10:4688–4698. PMID: 15269141.
Article
15. Raje N, Hideshima T, Davies FE, Chauhan D, Treon SP, Young G, et al. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol. 2004; 125:343–352. PMID: 15086415.
Article
16. Lee JJ, Choi BH, Kang HK, Park MS, Park JS, Kim SK, et al. Induction of multiple myeloma-specific cytotoxic T lymphocyte stimulation by dendritic cell pulsing with purified and optimized myeloma cell lysates. Leuk Lymphoma. 2007; 48:2022–2031. PMID: 17917970.
Article
17. Palucka AK, Ueno H, Connolly J, Kerneis-Norvell F, Blanck JP, Johnston DA, et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother. 2006; 29:545–557. PMID: 16971810.
18. Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 2008; 68:5972–5978. PMID: 18632653.
Article
19. Takei M, Tachikawa E, Hasegawa H, Lee JJ. Dendritic cells maturation promoted by M1 and M4, end products of steroidal ginseng saponins metabolized in digestive tracts, drive a potent Th1 polarization. Biochem Pharmacol. 2004; 68:441–452. PMID: 15242811.
Article
20. Trepiakas R, Pedersen AE, Met O, Hansen MH, Berntsen A, Svane IM. Comparison of alpha-type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients. Vaccine. 2008; 26:2824–2832. PMID: 18450338.
21. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000; 406:747–752. PMID: 10963602.
Article
22. Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, et al. A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res. 2001; 61:5697–5702. PMID: 11479200.
23. Matsumoto S, Saito H, Tsujitani S, Ikeguchi M. Allogeneic gastric cancer cell-dendritic cell hybrids induce tumor antigen (carcinoembryonic antigen) specific CD8+ T cells. Cancer Immunol Immunother. 2006; 55:131–139. PMID: 15891883.
24. Delirezh N, Moazzeni SM, Shokri F, Shokrgozar MA, Atri M, Kokhaei P. Autologous dendritic cells loaded with apoptotic tumor cells induce T cell-mediated immune responses against breast cancer in vitro . Cell Immunol. 2009; 257:23–31. PMID: 19306994.
25. Salcedo M, Bercovici N, Taylor R, Vereecken P, Massicard S, Duriau D, et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother. 2006; 55:819–829. PMID: 16187085.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr