Korean J Physiol Pharmacol.  2004 Apr;8(2):95-100.

Nitric Oxide-cGMP-Protein Kinase G Pathway Contributes to Cardioprotective Effects of ATP-Sensitive K+ Channels in Rat Hearts

Affiliations
  • 1Department of Physiology & Biophysics, Molecular Cell Physiology Research Group, College of Medicine, Inje University, Busan 614-735, Korea.
  • 2Biohealth Products Research Center, College of Medicine, Inje University, Busan 614-735, Korea.

Abstract

Ischemic preconditioning (IPC) has been accepted as a heart protection phenomenon against ischemia and reperfusion (I/R) injury. The activation of ATP-sensitive potassium (KATP) channels and the release of myocardial nitric oxide (NO) induced by IPC were demonstrated as the triggers or mediators of IPC. A common action mechanism of NO is a direct or indirect increase in tissue cGMP content. Furthermore, cGMP has also been shown to contribute cardiac protective effect to reduce heart I/R-induced infarction. The present investigation tested the hypothesis that KATP channels attenuate DNA strand breaks and oxidative damage in an in vitro model of I/R utilizing rat ventricular myocytes. We estimated DNA strand breaks and oxidative damage by mean of single cell gel electrophoresis with endonuclease III cutting sites (comet assay). In the I/R model, the level of DNA damage increased massively. Preconditioning with a single 5-min anoxia, diazoxide (100muM), SNAP (300muM) and 8- (4-Chlorophenylthio)-guanosine-3', 5'-cyclic monophosphate (8-pCPT-cGMP) (100muM) followed by 15 min reoxygenation reduced DNA damage level against subsequent 30 min anoxia and 60 min reoxygenation. These protective effects were blocked by the concomitant presence of glibenclamide (50muM), 5-hydroxydecanoate (5-HD) (100muM) and 8- (4-Chlorophenylthio)-guanosine-3', 5'-cyclic monophosphate, Rp-isomer (Rp-8-pCPT-cGMP) (100muM). These results suggest that NO-cGMP-protein kinase G (PKG) pathway contributes to cardioprotective effect of KATP channels in rat ventricular myocytes.

Keyword

Nitric oxide; ATP-sensitive K+ channel; Oxidative damage; Ischemic preconditioning

MeSH Terms

Animals
Anoxia
Diazoxide
DNA
DNA Damage
Electrophoresis
Glyburide
Heart*
Infarction
Ischemia
Ischemic Preconditioning
KATP Channels
Muscle Cells
Nitric Oxide
Phosphotransferases*
Potassium
Rats*
Reperfusion
DNA
Diazoxide
Glyburide
KATP Channels
Nitric Oxide
Phosphotransferases
Potassium
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr