Korean J Physiol Pharmacol.  2000 Jun;4(3):169-175.

Developmental changes of gustatory neurons in nucleus of solitary tract in rats

Affiliations
  • 1Department of Nursing and Research Institute of Nursing Science, Chonnam National University, Kwangju, Korea.

Abstract

To learn the developmental changes in intrinsic electrophysiological properties of the second order taste neurons, whole cell recordings from the developing nucleus of the solitary tract neurons were done in brainstem slices of postnatal rats. Rats aged from postnatal 0 to 21 days (P0-P21) were used, being divided into 3 age groups: postnatal first week (P0-P7 days), second week (P8-P14 days), and third week P15-P21 days). Slices containing gustatory NTS were cut horizontally in the thickness of 300 micrometer. Whole cell recordings were obtained from neurons in response to a series of hyperpolarizing and depolarizing current pulses. The intrinsic electrophysiological properties of the rostral NTS (rNTS) neurons were compared among the age groups. Depolarizing current pulses evoked a train of action potentials in all neurons of all age groups. The resting membrane potential and input resistance of the neurons did not show any significant differences during the ostnatal 3 weeks. The time constant, however, decreased during the development. Duration of action potential measured at half maximum amplitude was longer in younger age groups. Both the maximum rate of rise and the maximum rate of fall in the action potential increased during the first 3 weeks postnatal. Electrophysiologically more than half neurons were type III. In summary, it is suggested that developmental changes in electrophysiological properties in rNTS occur during the first three weeks in rats.

Keyword

Gustatory neuron; Development; Brain slice; Taste; Whole cell recording
Full Text Links
  • KJPP
Share
  • Twitter
  • Facebook
Copyright © 2020 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr