Korean J Ophthalmol.  2013 Feb;27(1):7-11. 10.3341/kjo.2013.27.1.7.

Effect of Haptic Material and Number of Intraocular Lens on Anterior Capsule Contraction after Cataract Surgery

Affiliations
  • 1Department of Ophthalmology and Visual Science, The Catholic University of Korea College of Medicine, Seoul, Korea. cassiopeia@catholic.ac.kr

Abstract

PURPOSE
To evaluate changes over time of the anterior capsule opening size after phacoemulsification, based on haptic number and composition of three acrylic intraocular lenses (IOLs).
METHODS
Fifty-five patients (70 eyes) were included. All underwent phacoemulsification followed by implantation of either an acrylic IOL with two-haptic (one-piece, 26 eyes; three-piece, 22 eyes), or four-haptic (one-piece, 22 eyes). The area of the anterior capsule opening size was measured one week postoperatively (baseline) and at three months.
RESULTS
There was a significant reduction in the area of the anterior capsule opening from one week as compared to three months postoperatively in all groups (p < 0.001). However, there was no significant difference in the reduction in the anterior capsule opening between the IOLs (p = 0.36).
CONCLUSIONS
The number and material of the haptic of the three acrylic IOLs did not influence the degree of anterior capsule opening shrinkage.

Keyword

Anterior capsule of the lens; Capsulorhexis; Intraocular; Lenses

MeSH Terms

*Acrylic Resins
Aged
Cataract Extraction/*methods
Female
Follow-Up Studies
Humans
Lens Capsule, Crystalline/*physiopathology
*Lenses, Intraocular
Male
*Polymethyl Methacrylate
Postoperative Period
Prosthesis Design
Retrospective Studies
*Silicone Elastomers
Acrylic Resins
Silicone Elastomers
Polymethyl Methacrylate

Figure

  • Fig. 1 This graph shows postoperative changes in the area of the anterior capsule opening (ACO). The initial area of the ACO one week after surgery was not significantly different among the groups (p = 0.88). There was a significant reduction at three months compared to one week in all three groups (p < 0.001). However, there was no significant difference in ACO three months postoperatively among the three groups (p = 0.65). *Statistically significant (p < 0.05).


Cited by  1 articles

Comparison of Anterior Capsule Stability Following Implantation of Three Single Piece Acrylic Intraocular Lenses with Different Haptic Design
Soonwon Yang, Sung A Lim, Kyung-Sun Na, Choun-Ki Joo
Korean J Ophthalmol. 2017;31(1):32-38.    doi: 10.3341/kjo.2017.31.1.32.


Reference

1. Hansen SO, Crandall AS, Olson RJ. Progressive constriction of the anterior capsular opening following intact capsulorhexis. J Cataract Refract Surg. 1993. 19:77–82.
2. Davison JA. Capsule contraction syndrome. J Cataract Refract Surg. 1993. 19:582–589.
3. Hayashi K, Hayashi H, Matsuo K, et al. Anterior capsule contraction and intraocular lens dislocation after implant surgery in eyes with retinitis pigmentosa. Ophthalmology. 1998. 105:1239–1243.
4. Hayashi H, Hayashi K, Nakao F, Hayashi F. Anterior capsule contraction and intraocular lens dislocation in eyes with pseudoexfoliation syndrome. Br J Ophthalmol. 1998. 82:1429–1432.
5. Hayashi H, Hayashi K, Nakao F, Hayashi F. Area reduction in the anterior capsule opening in eyes of diabetes mellitus patients. J Cataract Refract Surg. 1998. 24:1105–1110.
6. Ursell PG, Spalton DJ, Pande MV. Anterior capsule stability in eyes with intraocular lenses made of poly(methyl methacrylate), silicone, and AcrySof. J Cataract Refract Surg. 1997. 23:1532–1538.
7. Gonvers M, Sickenberg M, van Melle G. Change in capsulorhexis size after implantation of three types of intraocular lenses. J Cataract Refract Surg. 1997. 23:231–238.
8. Hayashi K, Hayashi H, Nakao F, Hayashi F. Anterior capsule contraction and intraocular lens decentration and tilt after hydrogel lens implantation. Br J Ophthalmol. 2001. 85:1294–1297.
9. Hayashi K, Hayashi H. Effect of anterior capsule contraction on visual function after cataract surgery. J Cataract Refract Surg. 2007. 33:1936–1940.
10. Cochener B, Jacq PL, Colin J. Capsule contraction after continuous curvilinear capsulorhexis: poly(methyl methacrylate) versus silicone intraocular lenses. J Cataract Refract Surg. 1999. 25:1362–1369.
11. Dahlhauser KF, Wroblewski KJ, Mader TH. Anterior capsule contraction with foldable silicone intraocular lenses. J Cataract Refract Surg. 1998. 24:1216–1219.
12. Kim JW, Yang JW, Jee DH. Stability of four-haptic intraocular lens in combined phacoemulsification and vitrectomy. J Korean Ophthalmol Soc. 2010. 51:829–834.
13. Davison JA. Capsular bag distension after endophacoemulsification and posterior chamber intraocular lens implantation. J Cataract Refract Surg. 1990. 16:99–108.
14. Nishi O, Nishi K. Intraocular lens encapsulation by shrinkage of the capsulorhexis opening. J Cataract Refract Surg. 1993. 19:544–545.
15. Meacock WR, Spalton DJ, Stanford MR. Role of cytokines in the pathogenesis of posterior capsule opacification. Br J Ophthalmol. 2000. 84:332–336.
16. Wormstone IM. Posterior capsule opacification: a cell biological perspective. Exp Eye Res. 2002. 74:337–347.
17. Kato S, Oshika T, Numaga J, et al. Anterior capsular contraction after cataract surgery in eyes of diabetic patients. Br J Ophthalmol. 2001. 85:21–23.
18. Spalton DJ. Posterior capsular opacification after cataract surgery. Eye (Lond). 1999. 13(Pt 3b):489–492.
19. Weiblinger RP. Review of the clinical literature on the use of the Nd:YAG laser for posterior capsulotomy. J Cataract Refract Surg. 1986. 12:162–170.
20. Akerele T, Minasian M, Little B, Jagger J. Posterior dislocation of Staar plate haptic silicone lenses following Nd:YAG capsulotomy. Eye (Lond). 1999. 13(Pt 5):700–702.
21. Michaeli-Cohen A, Belkin M, Goldring A, et al. Prevention of posterior capsule opacification with the CO2 laser. Ophthalmic Surg Lasers. 1998. 29:985–990.
22. Hayashi K, Hayashi H, Nakao F, Hayashi F. Reduction in the area of the anterior capsule opening after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation. Am J Ophthalmol. 1997. 123:441–447.
23. Hayashi K, Hayashi H. Intraocular lens factors that may affect anterior capsule contraction. Ophthalmology. 2005. 112:286–292.
24. Oshika T, Nagata T, Ishii Y. Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials: an experimental study. Br J Ophthalmol. 1998. 82:549–553.
25. Nagata T, Minakata A, Watanabe I. Adhesiveness of AcrySof to a collagen film. J Cataract Refract Surg. 1998. 24:367–370.
26. Sickenberg M, Gonvers M, van Melle G. Change in capsulorhexis size with four foldable loop-haptic lenses over 6 months. J Cataract Refract Surg. 1998. 24:925–930.
27. Miyake K, Ota I, Miyake S, Maekubo K. Correlation between intraocular lens hydrophilicity and anterior capsule opacification and aqueous flare. J Cataract Refract Surg. 1996. 22:Suppl 1. 764–769.
28. Tsinopoulos IT, Tsaousis KT, Kymionis GD, et al. Comparison of anterior capsule contraction between hydrophobic and hydrophilic intraocular lens models. Graefes Arch Clin Exp Ophthalmol. 2010. 248:1155–1158.
29. Gallagher SP, Pavilack MA. Risk factors for anterior capsule contraction syndrome with polypropylene or poly(methyl methacrylate) haptics. J Cataract Refract Surg. 1999. 25:1356–1361.
30. Hayashi K, Hayashi H. Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the lens capsule. J Cataract Refract Surg. 2005. 31:337–342.
31. Park TK, Chung SK, Baek NH. Changes in the area of the anterior capsule opening after intraocular lens implantation. J Cataract Refract Surg. 2002. 28:1613–1617.
32. Mingels A, Koch J, Lommatzsch A, et al. Comparison of two acrylic intraocular lenses with different haptic designs in patients with combined phacoemulsification and pars plana vitrectomy. Eye (Lond). 2007. 21:1379–1383.
Full Text Links
  • KJO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr