Clin Exp Otorhinolaryngol.  2008 Jun;1(2):63-74. 10.3342/ceo.2008.1.2.63.

Nystagmus as a Sign of Labyrinthine Disorders: Three-Dimensional Analysis of Nystagmus

Affiliations
  • 1Department of Otolaryngology, Nippon Medical School, Tokyo, Japan. t.yagi@nms.ac.jp

Abstract

In order to diagnose the pathological condition of vertiginous patients, a detailed observation of nystagmus in addition to examination of body equilibrium and other neurotological tests are essential. How to precisely record the eye movements is one of the goals of the researchers and clinicians who are interested in the analysis of eye movements for a long time. For considering that, one has to think about the optimal method for recording eye movements. In this review, the author introduced a new method, that is, an analysis of vestibular induced eye movements in three-dimensions and discussed the advantages and limitations of this method.

Keyword

Nystagmus; Three-dimensional analysis; Labyrinthine disorders; Equilibrium; Vertigo

MeSH Terms

Eye
Eye Movements
Humans
Vertigo

Figure

  • Fig. 1 Positioning test through infrared CCD camera. The examiner observes the patient's eye movements on a TV monitor.

  • Fig. 2 The simplified schematic representation of scleral search coil method. A uniform alternating magnetic field (vertical arrows) induces an alternating voltage in the eye coil, the amplitude of which is proportional to the sine of the angle between the plane of eye coil and direction of magnetic field (θ).

  • Fig. 3 Infrared CCD camera attached to the specially designed goggle. The goggle for observing the positional and positioning nystagmus through infrared CCD cameras in complete darkness (A) and in light using infrared reflection mirrors (B).

  • Fig. 4 Calculation of the horizontal, vertical, and torsional eye movements. The horizontal and vertical eye movements are calculated from the path of the center of the pupil (large +) and the torsional eye movements are calculated from the relation between the several iris striations (small +) and the center of the pupil (large +).

  • Fig. 5 The printout charts of horizontal (A) and vertical (B) saccades using the high-speed camera of 240 Hz sampling rate.

  • Fig. 6 The average amplitude changes of horizontal, vertical, and torsional eye movements in relation to the head position during a pendular rotation. The filled circles, filled squares, and open diamonds represent the average amplitude of horizontal, vertical, and torsional eye movements, respectively.

  • Fig. 7 The hydraulic driven spherical dome for examining the off vertical axis rotation (OVAR). The seen of outside (A) and the inside (B) of the dome.

  • Fig. 8 The eye movements during OVAR (A) and traces of the eye position after removing the saccades using computer program (B).

  • Fig. 9 The phase of the modulation component (MOC) in relation to the head position (A) and the fitting with least square sinusoids (B). The clear bias component (BIC) is seen in the horizontal eye movement.

  • Fig. 10 The three dimensional representation of the velocity vectors of the pressure nystagmus which are recorded from the eleven patients with lateral semicircular canal fistulae due to the cholesteatoma. The velocity vectors of nystagmus in these patients (thin black lines) are well aligned with the anatomical axis of the horizontal canal (circles on the surface of the sphere) with a standard deviation.

  • Fig. 11 The axes of the slow phase of nystagmus in a patient showed good alignment to the posterior canal axis both in sitting and head hanging positions (upper line) and that of a patient who exhibited good alignment in head the head hanging position and poor alignment in the sitting position to the posterior canal (lower line). A, B, and C indicate the view of eye from the front, the side, and the above, respectively. LPC: left posterior canal, RPC: right posterior canal.

  • Fig. 12 Three-dimensional representation of the cough-induced nystagmus in a patient with superior semicircular canal ehiscence syndrome. The right side view of the eyeball during cough (A) and same the cough-induced nystagmus as recorded on a different date rom that from A (B).


Reference

1. Baba S, Fukumoto A, Aoyagi M, Koizumi Y, Ikezono T, Yagi T. A comparative study on the observation of spontaneous nystagmus with Frenzel glasses and an infrared CCD camera. J Nippon Med Sch. 2004; 2. 71(1):25–29. PMID: 15129592.
Article
2. Brandt HF. A bidimensional eye-movement camera. Am J Physiol. 1937; 10. 49(4):666–670.
Article
3. Wendt Gr. Development of an eye camera for use with motion pictures. Psychol Monograph. 1952; 66(7):1–18.
Article
4. Miller EF 2nd, Graybiel A. A comparison of ocular counter-rolling movements between normal persons and deaf subjects with bilateral labyrinthine defects. Ann Otol Rhinol Laryngol. 1963; 12. 72:885–893. PMID: 14088730.
5. Kumar A, Glenn K. Binocular infrared oculography. Laryngoscope. 1992; 4. 102(4):367–378. PMID: 1556885.
Article
6. Fender DH. Torsional movements of eye ball. Br J Ophthalmol. 1955; 2. 39(2):65–72. PMID: 14351667.
7. Shackel B. Venables DH, Martin I, editors. Eye movement recording by electro-oculography. Manual of Psycho-physiological Methods. 1967. Amsterdam: North-Holland;p. 299–236.
8. Gonshor A, Malcolm R. Effect of changes in illumination level on electro-oculography (EOG). Aerosp Med. 1971; 2. 42(2):138–140. PMID: 5547157.
9. Robinson DA. A method of measuring of eye movements using scleral search coil in a magnetic field. IEEE Trans Biomed Eng. 1963; 10. 10:137–145. PMID: 14121113.
10. Fuchs AF, Robinson DA. A method for measuring horizontal and vertical eye movements in the monkey. J Appl Physiol. 1966; 5. 21(3):1068–1070. PMID: 4958032.
11. Collewjin H, van der Mark F, Jansen TC. Precise recording of human eye movements. Vision Res. 1975; 3. 15(3):447–450. PMID: 1136166.
12. Otto D, Gehle F, Eckmiller R. Vide-oculographic measurement of 3-dimensional eye rotation. J Neurosci Methods. 1990; 12. 35(3):229–234. PMID: 2084392.
13. Yamanobe S, Taira S, Morizono T, Yagi T, Kamio T. Eye movement analysis system using computerized image recognition. Arch Otolaryngol Head Neck Surg. 1990; 3. 116(3):338–341. PMID: 2306353.
Article
14. Yagi T, Ohyama Y, Kamura E, Shitara A, Kokawa T, Abe S, Nishituji J. New three-dimensional analysis system of eye movements. Otolaryngol Head Neck Surg (Tokyo). 1998; 70(4):241–247.
15. Scherer H, Teiwes W, Clarke AH. Measuring three dimensions of eye using dynamic situations by means of videooculography. Acta Otolaryngol. 1991; 111(2):182–187. PMID: 2068899.
16. Yagi T, Koizumi Y, Aoyagi M, Kimura M, Sugizaki K. Three dimensional analysis of eye movements using four times high-speed video camera. Auris Nasus Larynx. 2005; 6. 32(2):107–112. PMID: 15917165.
17. Uemura T, Cohen B. Effects of vestibular nuclei lesions on vetibulo-ocular reflexes and posture in monkeys. Acta Otolaryngol Suppl. 1973; 315:1–71. PMID: 4364922.
18. Arai Y, Suzuki JI, Hess BJ, Henn V. Caloric nystagmus in three dimensions under otolith control in rhesus monkeys:A preliminary report. ORL J Otorhinolaryngol Relat Spec. 1990; 52(4):218–225. PMID: 2392284.
19. Yagi T, Kurosaki S, Yamanobe S, Morizono T. Three-component analysis of caloric nystagmus in humans. Arch Otolaryngol Head Neck Surg. 1992; 10. 118(10):1077–1080. PMID: 1389059.
Article
20. Suzuki K. [Three-dimensional analysis of vestibulo-ocular reflexes-the relation between head position and eye movement]. Nippon Jibiinkoka Gakkai Kaiho. 1996; 12. 99(12):1751–1757. Japanese. PMID: 8997093.
21. Blanks RHI, Curthosy IS, Markham CH. Planar relationships of canals in man. Acta Otolaryngol. 1975; Sep–Oct. 80(3-4):185–196. PMID: 1101636.
22. Feter M, Hain T, Zee DS. Influence of eye and head position on the vestibule-ocular reflex. Exp Brain Res. 1986; 64(1):208–216. PMID: 3770110.
23. Guedry F Jr. Orientation of the rotation-axis relative to gravity. Acta Otolaryngol. 1965; Jul–Aug. 60:30–48. PMID: 14337956.
24. Benson AJ, Bodin MA. Interaction of linear and angular acceleration on vestibular receptors in man. Aerosp Med. 1966; 2. 37(2):144–154. PMID: 5295433.
25. Hess BJ, Dieringer N. Spatial organization of the maculo-ocular reflex of the rat:Responses during off-vertical axis rotation. Eur J Neurosci. 1990; 10. 2(11):909–919. PMID: 12106078.
26. Darlot C, Lopez-Barneo J, Tracy D. Asymmetries of vertical vestibular nystagmus in the cat. Exp Brain Res. 1981; 2. 41(3-4):420–426. PMID: 7215503.
Article
27. Harris LR. Vestibular and optokinetic eye movements evoked in the cat by rotation about a tilted axis. Exp Brain Res. 1987; 5. 66(3):522–532. PMID: 3609198.
Article
28. Angelaki DA, Hess BJ. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. J Neurophysiol. 1996; 6. 75(6):2405–2424. PMID: 8793753.
29. Cohen B, Helwig D, Raphan T. Baclofen and velocity storage:a method of the effects of the drug on the vestibule-ocular reflex in the rhesus monkey. J Physiol. 1987; 12. 393:703–725. PMID: 3446808.
30. Darlot C, Denise P, Droulez J, Cohen B, Berthoz A. Eye movements induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res. 1988; 10. 73(1):91–105. PMID: 3208865.
Article
31. Furman JMR, Schor RH, Schumann TL. Off-vertical axis rotation;a test of the otolith-ocular reflex. Ann Otol Rhinol Laryngol. 1992; 8. 101(8):643–650. PMID: 1497268.
32. Yagi T, Kamura E, Shitara A. Three dimensional eye movement analysis during off vertical axis rotation in human subjects. Arch Ital Biol. 2000; 1. 138(1):39–47. PMID: 10604032.
33. Kamura E, Yagi T. Three-dimensional analysis of eye movements during off vertical axis rotation in patients with unilateral labyrinthine loss. Acta Otolaryngol. 2001; 1. 121(2):225–228. PMID: 11349784.
34. Goldberg JM, Fernandez C. Physiological mechanisms of the nystagmus produced by rotations about an earth horizontal axis. Ann N Y Acad Sci. 1981; 374:40–43. PMID: 6978636.
35. Raphan T, Cohen C, Henn V. Effects of gravity on rotatory nystagmus in monkey. Ann N Y Acad Sci. 1981; 374:44–45. PMID: 6978641.
36. Raphan T, Schnabolk C. Modeling slow phase velocity generation during off-vertical axis rotation. Ann N Y Acad Sci. 1988; 545:29–50. PMID: 3149166.
37. Koizumi Y, Kimura M, Mokuno E, Yagi T. 3D eye movement analysis during sinusoidal off vertical axis rotation in human subjects. Acta Otolaryngol. 2003; 1. 123(2):121–128. PMID: 12701725.
Article
38. Cohen B, Suzuki JI, Bender MB. Eye movements from semicircular canal nerve stimulation in the cat. Ann Otol Rhinol Laryngol. 1964; 3. 73:153–169. PMID: 14128701.
39. Suzuki JI, Cohen B, Bender MB. Compensatory eye movements induced by vertical semicircular canal stimulation. Exp Neurol. 1964; 2. 9:137–160. PMID: 14126123.
Article
40. Della Santina CC, Potyagaylo V, Migliaccio AA, Minor LB, Carey JP. Orientation of human semicircular canals measured by three-dimensional multiplanar CT reconstruction. J Assoc Res Otolaryngol. 2005; 9. 6(3):191–206. PMID: 16088383.
Article
41. Yagi T, Kamura E, Shitara A. Three-dimensional analysis of pressure nystagmus in labyrinthine fistulae. Acta Otolaryngol. 1999; 3. 119(2):150–153. PMID: 10320065.
42. McClure JA. Horizontal canal BPV. J Otolaryngol. 1985; 2. 14(1):30–35. PMID: 4068089.
43. Pagnini P, Nuti D, Vannucchi P. Benign paroxysmal positional vertigo of the horizontal canal. ORL J Otorhinolaryngol Relat Spec. 1989; 51(3):161–170. PMID: 2734007.
44. Baloh RW, Jacobson K, Honrubia V. Horizontal semicircular canal variant of benign positional vertigo. Neurology. 1993; 12. 43(12):2542–2549. PMID: 8255454.
Article
45. Baloh RW, Richman L, Yee RD, Honrubia V. The dynamics of vertical eye movements in normal human subjects. Aviat Space Environ Med. 1983; 1. 54(1):32–38. PMID: 6830555.
46. Yagi T, Morishita M, Koizumi Y, Kokawa M, Kamura E, Baba S. Is the pathology of horizontal canal benign paroxysmal positional vertigo really localize in the horizontal semicircular canal? Acta Otolaryngol. 2001; 12. 121(8):930–934. PMID: 11813897.
47. Barany R. Diagnose von Krankhaitserscheinungen im Bereiche des Otolithenapparates. Acta Otolaryngol. 1921; 2:434–437.
48. Dix MR, Hallpike CS. The pathology, symptomatology and diagnosis of certain common diseases of vestibular system. Proc R Soc Med. 1952; 45:341–354. PMID: 14941845.
49. Schuknecht HF. Cupololithiasis. Arch Otolaryngol. 1969; 12. 90(6):765–778. PMID: 5353084.
50. Hall SF, Ruby RRF, McClure JA. The mechanics of benign paroxysmal vertigo. J Otolaryngol. 1979; 4. 8(2):151–158. PMID: 430582.
51. Fetter M, Sievering F. Three-dimensional eye movement analysis of benign paroxysmal positional vertigo and nystagmus. Acta Otolaryngol. 1995; 5. 115(3):353–357. PMID: 7653253.
52. Aw ST, Todd MJ, Aw GE, McGarvie LA, Halmagi GM. Benign positional nysytagmus. A study of its three-dimensional spatio-temporal characteristics. Neurology. 2005; 6. 14. 64(11):1897–1905. PMID: 15955941.
53. Yagi T, Koizumi Y, Kimura M, Aoyagi M. Pathological localization of so-called posterior canal BPPV. Auris Nasus Larynx. 2006; 12. 33(4):391–395. PMID: 16876361.
Article
54. Minor LB, Solomon D, Zinreich JS, Zee D. Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg. 1998; 3. 124(3):249–258. PMID: 9525507.
Article
55. Minor LB, Cremer PD, Carey JP, Dera Santina CC, Streubel SO, Weg N. Symptoms and signs in superior canal dehiscence syndrome. Ann N Y Acad Sci. 2001; 10. 942:259–273. PMID: 11710468.
Article
56. Brantberg K, Bergenius J, Mendel L, Witt H, Tribukait A, Ygge J. Symptoms, findings and treatment in patients with dehiscence of the superior semicircular canal. Acta Otolaryngol. 2001; 1. 121(1):68–75. PMID: 11270498.
57. Yagi T, Koizumi Y. 3D analysis of cough-induced nystagmus in a patient with superior semicircular canal dehiscence. Submitted.
58. Uzun-Coruhlu H, Curthoys IS, Jones AS. Attachment of the utricular and saccular maculae to the temporal bone. Hear Res. 2007; 11. 233(1-2):77–85. PMID: 17919861.
Article
59. Barany R. Uber die vom Ohrlabyrinth ausgeloste Gegenrollung der Augen bei Normalhorenden, Ohrenkranken und Taubstummen. Archiv fur Ohrenheilkunde. 1906; 68:1–30.
60. Uchino Y, Sasaki M, Sato H, Imagawa H, Suwa H, Isu N. Utriculoocular reflex arc of the cat. J Neurophysiol. 1996; 9. 76(3):1896–1903. PMID: 8890302.
Article
61. Uchino Y, Sasaki M, Sato H, Imagawa H, Suwa H, Isu N. Utricular input to cat extraocular motoneurons. Acta Otolaryngol Suppl. 1997; 528:44–48. PMID: 9288236.
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr