1. Andersson I, van Scheltinga ACT, Valegård K. Towards new β-lactam antibiotics. Cell Mol Life Sci. 2001. 58:1897–1906.
Article
2. Bishop EJ, Howden BP. Treatment of
Staphylococcus aureus infections: new issues, emerging therapies and future directions. Expert Opin Emerg Drugs. 2007. 12:1–22.
Article
3. Bon J, Mani N, Jayaswal RK. Molecular analysis of lytic genes of bacteriophage 80α of
Staphylococcus aureus. Can J Microbiol. 1997. 43:612–616.
Article
4. Borysowski J, Weber-Dąbrowska B, Górski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood). 2006. 231:366–377.
Article
5. DeGraves FJ, Fetrow J. Economics of mastitis and mastitis control. Vet Clin North Am Food Anim Pract. 1993. 9:421–434.
Article
6. Deluyker HA, Chester ST, Van Oye SN. A multilocation clinical trial in lactating dairy cows affected with clinical mastitis to compare the efficacy of treatment with intramammary infusions of a lincomycin/neomycin combination with an ampicillin/cloxacillin combination. J Vet Pharmacol Ther. 1999. 22:274–282.
Article
7. Donovan DM. Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat Biotechnol. 2007. 1:113–122.
Article
8. Doughty CC, Mann JA. Purification and properties of a bacteriophage-induced cell wall peptidase from
Staphylococcus aureus. J Bacteriol. 1967. 93:1089–1095.
Article
9. Etlinger HM, Caspers P, Matile H, Schoenfeld HJ, Stueber D, Takacs B. Ability of recombinant or native proteins to protect monkeys against heterologous challenge with
Plasmodium falciparum. Infect Immun. 1991. 59:3498–3503.
Article
10. Gill JJ, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical
Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother. 2006. 50:2912–2918.
Article
11. Heath ACG, Broadwell AH, Chilcott CN, Wigley PJ, Shoemaker CB. Efficacy of native and recombinant Cry1B protein against experimentally induced and naturally acquired ovine myiasis (fly strike) in sheep. J Econ Entomol. 2004. 97:1797–1804.
Article
12. Loeffler JM, Fischetti VA. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant
Streptococcus pneumoniae strains. Antimicrob Agents Chemother. 2003. 47:375–377.
Article
13. Loessner MJ, Gaeng S, Scherer S. Evidence for a holin-like protein gene fully embedded out of frame in the endolysin gene of
Staphylococcus aureus bacteriophage 187. J Bacteriol. 1999. 181:4452–4460.
Article
14. Loessner MJ, Gaeng S, Wendlinger G, Maier SK, Scherer S. The two-component lysis system of
Staphylococcus aureus bacteriophage Twort: a large TTG-start holin and an associated amidase endolysin. FEMS Microbiol Lett. 1998. 162:265–274.
Article
15. Loessner MJ, Maier SK, Daubek-Puza H, Wendlinger G, Scherer S. Three
Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. J Bacteriol. 1997. 179:2845–2851.
Article
16. Loessner MJ, Wendlinger G, Scherer S. Heterogeneous endolysins in
Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol. 1995. 16:1231–1241.
Article
17. Lorch A. Bacteriophages: An alternative to antibiotics? Biotechnol Dev Monit. 1999. 39:14–17.
18. Mann NH. The potential of phages to prevent MRSA infections. Res Microbiol. 2008. 159:400–405.
Article
19. Markel DE, Eklund C. Isolation, characterization, and classification of three bacteriophage isolates for the genus
Levinea. Int J Syst Bacteriol. 1974. 24:230–234.
Article
20. Mishra AK, Rawat M, Abhishek , Sureshkannan . Characterization and lytic activity of endolysin induced by bacteriophage SA4 against mastitogenic isolates of Staphylococcus of bovine origin. Indian Vet J. 2012. 89:24–26.
21. Morita M, Tanji Y, Orito Y, Mizoguchi K, Soejima A, Unno H. Functional analysis of antibacterial activity of
Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett. 2001. 500:56–59.
Article
22. Navarre WW, Ton-That H, Faull KF, Schneewind O. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage φ11. Identification of a
D-alanyl-glycine endopeptidase activity. J Biol Chem. 1999. 274:15847–15856.
Article
23. Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA. 2001. 98:4107–4112.
Article
24. O'Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol. 2005. 187:7161–7164.
25. Park SC, Shimamura I, Fukunaga M, Mori KI, Nakai T. Isolation of bacteriophages specific to a fish pathogen,
Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol. 2000. 66:1416–1422.
Article
26. Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S. A novel bacteriophage tail-associated muralytic enzyme (TAME) from phage K and its development into a potent a antistaphylococcal protein. BMC Microbiol. 2011. 11:226.
27. Ralston DJ, Baer BS, Lieberman M, Krueger AP. Virolysin: a virus-induced lysine from staphylococcal phage lysates. Proc Soc Exp Biol Med. 1955. 89:502–507.
28. Rodríguez L, Martínez B, Zhou Y, Rodríguez A, Donovan DM, García P. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. BMC Microbiol. 2011. 11:138.
29. Rodríguez-Rubio L, Gutiérrez D, Martínez B, Rodríguez A, García P. Lytic activity of LysH5 endolysin secreted by
Lactococcus lactis using the secretion signal sequence of bacteriocin Lcn972. Appl Environ Microbiol. 2012. 78:3469–3472.
Article
30. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual. 2001. Vol. 3:3rd ed. New York: Cold Spring Harbor Laboratory Press;15.14–15.18.
31. Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage φ11 and φ12 endolysins on whole cells and biofilms of
Staphylococcus aureus. Appl Environ Microbiol. 2007. 73:347–352.
Article
32. Shearman C, Underwood H, Jury K, Gasson M. Cloning and DNA sequence analysis of a
Lactococcus bacteriophage lysin gene. Mol Gen Genet. 1989. 218:214–221.
Article
33. Sonstein SA, Hammel JM, Bondi A. Staphylococcal bacteriophage-associated lysin: a lytic agent active against
Staphylococcus aureus. J Bacteriol. 1971. 107:499–504.
Article
34. Yoong P, Schuch R, Nelson D, Fischetti VA. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant
Enterococcus faecalis and
Enterococcus faecium. J Bacteriol. 2004. 186:4808–4812.
Article