Brain Neurorehabil.  2011 Mar;4(1):1-11. 10.12786/bn.2011.4.1.1.

Animal Models of Stroke

Affiliations
  • 1Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College Medicine, Korea. kysmart@amc.seoul.kr

Abstract

Stroke remains the leading cause of adult disability all over the world. Animal stroke models provide an important neural underlying motor recovery as well as the efficacy of various rehabilitative therapies for enhancing functional recovery. This article reviewed the most commonly used ischemic and hemorrhagic stroke models in rats emphasizing their advantages and disadvantages. In addition, we described the various behavioral tasks for assessing the sensorimotor or the cognitive function after stroke model. Finally, we discused several methodological issues and general considerations for conducting research using rat model of stroke.

Keyword

behavior; hemorrhage; ischemia; middle cerebral artery; rat; stroke

MeSH Terms

Adult
Animals
Hemorrhage
Humans
Ischemia
Middle Cerebral Artery
Models, Animal
Rats
Stroke

Reference

1. Emre U, Rantanen K, Tatlisumak T. Antithrombotic treatment in the prevention of ischemic stroke. Curr Drug Targets. 2007. 8:817–823.
2. Rantanen K, Tatlisumak T. Secondary prevention of ischemic stroke. Curr Drug Targets. 2004. 5:457–472.
3. Tatlisumak T, Rantanen K, Fisher M. Stroke prevention: A challenging but rewarding task. Curr Drug Targets. 2007. 8:784–785.
4. Gresham GE, Kelly-Hayes M, Wolf PA, Beiser AS, Kase CS, D'Agostino RB. Survival and functional status 20 or more years after first stroke: The framingham study. Stroke. 1998. 29:793–797.
5. Hsu CY. Criteria for valid preclinical trials using animal stroke models. Stroke. 1993. 24:633–636.
6. Coyle P. Middle cerebral artery occlusion in the young rat. Stroke. 1982. 13:855–859.
7. Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke. 1989. 20:1627–1642.
8. Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke. 1976. 7:46–53.
9. Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: How relevant is the rat? Nat Rev Neurosci. 2002. 3:574–579.
10. Whishaw IQ, Suchowersky O, Davis L, Sarna J, Metz GA, Pellis SM. Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human parkinson's disease (pd) reveals homology to deficits in animal models. Behav Brain Res. 2002. 133:165–176.
11. Cramer SC. Clinical issues in animal models of stroke and rehabilitation. Ilar J. 2003. 44:83–84.
12. Lindner MD, Gribkoff VK, Donlan NA, Jones TA. Long-lasting functional disabilities in middle-aged rats with small cerebral infarcts. J Neurosci. 2003. 23:10913–10922.
13. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008. 51:S225–S239.
14. Kozuimi J, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 1986. 8:1–8.
15. Durukan A, Tatlisumak T. Fisher M, editor. Animal models of ischemic stroke. Handbook of clinical neurology stroke, part 1 basic and epidemiological aspects. 2009. New York: Elsevier;1–464.
16. Fisher M. Recommendations for advancing development of acute stroke therapies: Stroke therapy academic industry roundtable 3. Stroke. 2003. 34:1539–1546.
17. Li F, Han S, Tatlisumak T, Carano RA, Irie K, Sotak CH, Fisher M. A new method to improve in-bore middle cerebral artery occlusion in rats: Demonstration with diffusion- and perfusion-weighted imaging. Stroke. 1998. 29:1715–1719.
18. Li F, Han SS, Tatlisumak T, Liu KF, Garcia JH, Sotak CH, Fisher M. Reversal of acute apparent diffusion coefficient abnormalities and delayed neuronal death following transient focal cerebral ischemia in rats. Ann Neurol. 1999. 46:333–342.
19. Li F, Tatlisumak T. Tatlisumak T, Fisher M, editors. Focal brain ischemia models in rodents. Handbook of experimental neurology: Methods and techniques in animal research. 2006. Cambridge: Cambridge university press;311–328.
20. Meng X, Fisher M, Shen Q, Sotak CH, Duong TQ. Characterizing the diffusion/perfusion mismatch in experimental focal cerebral ischemia. Ann Neurol. 2004. 55:207–212.
21. Kuge Y, Minematsu K, Yamaguchi T, Miyake Y. Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke. 1995. 26:1655–1657.
22. Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: Evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-doppler flowmetry. Stroke. 1998. 29:2162–2170.
23. Zarow GJ, Karibe H, States BA, Graham SH, Weinstein PR. Endovascular suture occlusion of the middle cerebral artery in rats: Effect of suture insertion distance on cerebral blood flow, infarct distribution and infarct volume. Neurol Res. 1997. 19:409–416.
24. Zhao Q, Memezawa H, Smith ML, Siesjo BK. Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res. 1994. 649:253–259.
25. Li F, Omae T, Fisher M. Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke. 1999. 30:2464–2470.
26. Sicard KM, Henninger N, Fisher M, Duong TQ, Ferris CF. Differential recovery of multimodal mri and behavior after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2006. 26:1451–1462.
27. Sicard KM, Henninger N, Fisher M, Duong TQ, Ferris CF. Long-term changes of functional mri-based brain function, behavioral status, and histopathology after transient focal cerebral ischemia in rats. Stroke. 2006. 37:2593–2600.
28. Futrell N, Watson BD, Dietrich WD, Prado R, Millikan C, Ginsberg MD. A new model of embolic stroke produced by photochemical injury to the carotid artery in the rat. Ann Neurol. 1988. 23:251–257.
29. Hill NC, Millikan CH, Wakim KG, Sayre GP. Studies in cerebrovascular disease. Vii. Experimental production of cerebral infarction by intracarotid injection of homologous blood clot; preliminary report. Proc Staff Meet Mayo Clin. 1955. 30:625–633.
30. Kudo M, Aoyama A, Ichimori S, Fukunaga N. An animal model of cerebral infarction. Homologous blood clot emboli in rats. Stroke. 1982. 13:505–508.
31. Albers GW. Antithrombotic agents in cerebral ischemia. Am J Cardiol. 1995. 75:34B–38B.
32. Tissue plasminogen activator for acute ischemic stroke. The national institute of neurological disorders and stroke rt-pa stroke study group. N Engl J Med. 1995. 333:1581–1587.
33. Savitz SI, Fisher M. Future of neuroprotection for acute stroke: In the aftermath of the saint trials. Ann Neurol. 2007. 61:396–402.
34. Busch E, Kruger K, Hossmann KA. Improved model of thromboembolic stroke and rt-pa induced reperfusion in the rat. Brain Res. 1997. 778:16–24.
35. Takano K, Carano RA, Tatlisumak T, Meiler M, Sotak CH, Kleinert HD, Fisher M. Efficacy of intra-arterial and intravenous prourokinase in an embolic stroke model evaluated by diffusion-perfusion magnetic resonance imaging. Neurology. 1998. 50:870–875.
36. Molnar L, Hegedus K, Fekete I. A new model for inducing transient cerebral ischemia and subsequent reperfusion in rabbits without craniectomy. Stroke. 1988. 19:1262–1266.
37. Zivin JA, DeGirolami U, Kochhar A, Lyden PD, Mazzarella V, Hemenway CC, Henry ME. A model for quantitative evaluation of embolic stroke therapy. Brain Res. 1987. 435:305–309.
38. Gerriets T, Li F, Silva MD, Meng X, Brevard M, Sotak CH, Fisher M. The macrosphere model: Evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods. 2003. 122:201–211.
39. Pulsinelli W, Jacewicz M. Barnett HJ, Mohr JP, Stein BM, Yatsu FM, editors. Animal models of brain ischemia. Stroke: Pathophysiology, diagnosis, and management. 1992. New York: Churchill Livingstone.
40. Shigeno T, Teasdale GM, McCulloch J, Graham DI. Recirculation model following mca occlusion in rats. Cerebral blood flow, cerebrovascular permeability, and brain edema. J Neurosurg. 1985. 63:272–277.
41. Osborne KA, Shigeno T, Balarsky AM, Ford I, McCulloch J, Teasdale GM, Graham DI. Quantitative assessment of early brain damage in a rat model of focal cerebral ischaemia. J Neurol Neurosurg Psychiatry. 1987. 50:402–410.
42. Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W. Focal brain ischemia in the rat: Methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab. 1988. 8:474–485.
43. Yanamoto H, Nagata I, Niitsu Y, Xue JH, Zhang Z, Kikuchi H. Evaluation of mcao stroke models in normotensive rats: Standardized neocortical infarction by the 3vo technique. Exp Neurol. 2003. 182:261–274.
44. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985. 17:497–504.
45. Dietrich WD, Watson BD, Busto R, Ginsberg MD, Bethea JR. Photochemically induced cerebral infarction. I. Early microvascular alterations. Acta Neuropathol. 1987. 72:315–325.
46. Cai H, Yao H, Ibayashi S, Uchimura H, Fujishima M. Photothrombotic middle cerebral artery occlusion in spontaneously hypertensive rats: Influence of substrain, gender, and distal middle cerebral artery patterns on infarct size. Stroke. 1998. 29:1982–1986.
47. Hilger T, Blunk JA, Hoehn M, Mies G, Wester P. Characterization of a novel chronic photothrombotic ring stroke model in rats by magnetic resonance imaging, biochemical imaging, and histology. J Cereb Blood Flow Metab. 2004. 24:789–797.
48. Sharkey J, Butcher SP. Characterisation of an experimental model of stroke produced by intracerebral microinjection of endothelin-1 adjacent to the rat middle cerebral artery. J Neurosci Methods. 1995. 60:125–131.
49. Macrae IM, Robinson MJ, Graham DI, Reid JL, McCulloch J. Endothelin-1-induced reductions in cerebral blood flow: Dose dependency, time course, and neuropathological consequences. J Cereb Blood Flow Metab. 1993. 13:276–284.
50. Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats : Relationship between blood fractions and brain cell death. Stroke. 2000. 31:1721–1727.
51. Sehba FA, Bederson JB. Handbook of experimental neurology: Methods and techniques in animal research. 2006. Cambridge: Cambridge University Press.
52. Strbian D, Tatlisumak T, Ramadan UA, Lindsberg PJ. Mast cell blocking reduces brain edema and hematoma volume and improves outcome after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007. 27:795–802.
53. Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke. 1998. 29:2580–2586.
54. Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: Time course of inflammation and cell death. Neurosci Lett. 2000. 283:230–232.
55. Kingman TA, Mendelow AD, Graham DI, Teasdale GM. Experimental intracerebral mass: Description of model, intracranial pressure changes and neuropathology. J Neuropathol Exp Neurol. 1988. 47:128–137.
56. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990. 21:801–807.
57. Terai K, Suzuki M, Sasamata M, Miyata K. Amount of bleeding and hematoma size in the collagenase-induced intracerebral hemorrhage rat model. Neurochem Res. 2003. 28:779–785.
58. Sinar EJ, Mendelow AD, Graham DI, Teasdale GM. Experimental intracerebral hemorrhage: Effects of a temporary mass lesion. J Neurosurg. 1987. 66:568–576.
59. Lopez Valdes E, Hernandez Lain A, Calandre L, Grau M, Cabello A, Gomez-Escalonilla C. Time window for clinical effectiveness of mass evacuation in a rat balloon model mimicking an intraparenchymatous hematoma. J Neurol Sci. 2000. 174:40–46.
60. Mendelow AD. Mechanisms of ischemic brain damage with intracerebral hemorrhage. Stroke. 1993. 24:I115–I117.
61. Funnell WR, Maysinger D, Cuello AC. Three-dimensional reconstruction and quantitative evaluation of devascularizing cortical lesions in the rat. J Neurosci Methods. 1990. 35:147–156.
62. Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis. 2003. 12:152–159.
63. Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: Relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg. 1994. 81:93–102.
64. Hua Y, Keep RF, Schallert T, Hoff JT, Xi G. A thrombin inhibitor reduces brain edema, glioma mass and neurological deficits in a rat glioma model. Acta Neurochir Suppl. 2003. 86:503–506.
65. Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF. Intracerebral hemorrhage-induced neuronal death. Neurosurgery. 2001. 48:875–882.
66. Matsushita K, Meng W, Wang X, Asahi M, Asahi K, Moskowitz MA, Lo EH. Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab. 2000. 20:396–404.
67. Nakashima K, Yamashita K, Uesugi S, Ito H. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat. J Neurotrauma. 1999. 16:143–151.
68. Persson L, Hardemark HG, Bolander HG, Hillered L, Olsson Y. Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke. 1989. 20:641–645.
69. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke. 1986. 17:472–476.
70. Menzies SA, Hoff JT, Betz AL. Middle cerebral artery occlusion in rats: A neurological and pathological evaluation of a reproducible model. Neurosurgery. 1992. 31:100–106.
71. Zausinger S, Hungerhuber E, Baethmann A, Reulen H, Schmid-Elsaesser R. Neurological impairment in rats after transient middle cerebral artery occlusion: A comparative study under various treatment paradigms. Brain Res. 2000. 863:94–105.
72. Kleim JA, Boychuk JA, Adkins DL. Rat models of upper extremity impairment in stroke. Ilar J. 2007. 48:374–384.
73. Hamm RJ, Pike BR, O'Dell DM, Lyeth BG, Jenkins LW. The rotarod test: An evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma. 1994. 11:187–196.
74. Heath DL, Vink R. Magnesium sulphate improves neurologic outcome following severe closed head injury in rats. Neurosci Lett. 1997. 228:175–178.
75. Combs DJ, D'Alecy LG. Motor performance in rats exposed to severe forebrain ischemia: Effect of fasting and 1,3-butanediol. Stroke. 1987. 18:503–511.
76. DeGraba TJ, Ostrow P, Hanson S, Grotta JC. Motor performance, histologic damage, and calcium influx in rats treated with nbqx after focal ischemia. J Cereb Blood Flow Metab. 1994. 14:262–268.
77. De Ryck M, Van Reempts J, Borgers M, Wauquier A, Janssen PA. Photochemical stroke model: Flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke. 1989. 20:1383–1390.
78. Puurunen K, Jolkkonen J, Sirvio J, Haapalinna A, Sivenius J. An alpha(2)-adrenergic antagonist, atipamezole, facilitates behavioral recovery after focal cerebral ischemia in rats. Neuropharmacology. 2001. 40:597–606.
79. D'Hooge R, De Deyn PP. Applications of the morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001. 36:60–90.
80. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986. 17:1304–1308.
81. Swanson RA, Sharp FR. Infarct measurement methodology. J Cereb Blood Flow Metab. 1994. 14:697–698.
82. Roof RL, Schielke GP, Ren X, Hall ED. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke. 2001. 32:2648–2657.
83. Tatlisumak T. Is ct or mri the method of choice for imaging patients with acute stroke? Why should men divide if fate has united? Stroke. 2002. 33:2144–2145.
84. Tatlisumak T, Li F. Use of diffusion- and perfusion-weighted magnetic resonance imaging in drug development for ischemic stroke. Curr Drug Targets CNS Neurol Disord. 2003. 2:131–141.
85. Tatlisumak T, Strbian D, Abo Ramadan U, Li F. The role of diffusion- and perfusion-weighted magnetic resonance imaging in drug development for ischemic stroke: From laboratory to clinics. Curr Vasc Pharmacol. 2004. 2:343–355.
86. Dittmar M, Spruss T, Schuierer G, Horn M. External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke. 2003. 34:2252–2257.
87. McColl BW, Carswell HV, McCulloch J, Horsburgh K. Extension of cerebral hypoperfusion and ischaemic pathology beyond mca territory after intraluminal filament occlusion in c57bl/6j mice. Brain Res. 2004. 997:15–23.
88. Lee SU, Kim DY, Park SH, Choi DH, Park HW, Han TR. Mild to moderate early exercise promotes recovery from cerebral ischemia in rats. Can J Neurol Sci. 2009. 36:443–449.
89. Kim DY, Park SH, Lee SU, Choi DH, Park HW, Paek SH, Shin HY, Kim EY, Park SP, Lim JH. Effect of human embryonic stem cell-derived neuronal precursor cell transplantation into the cerebral infarct model of rat with exercise. Neurosci Res. 2007. 58:164–175.
90. Ohlsson AL, Johansson BB. Environment influences functional outcome of cerebral infarction in rats. Stroke. 1995. 26:644–649.
91. Seo HG, Kim DY, Park HW, Lee SU, Park SH. Early motor balance and coordination training increased synaptophysin in subcortical regions of the ischemic rat brain. J Korean Med Sci. 2010. 25:1638–1645.
Full Text Links
  • BN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr