Korean J Clin Microbiol.  2012 Jun;15(2):43-48. 10.5145/KJCM.2012.15.2.43.

Sentinel Surveillance and Molecular Epidemiology of Multidrug Resistance Bacteria

  • 1Division of Antimicrobial Resistance, Korea National Institute of Health, Osong, Korea. yslee07@nih.go.kr


The global emergence and spread of multidrug resistant bacterial infections in communities and hospitals has become an important issue in public health. The resistance rate of gram-positive cocci to vancomycin and the resistance rate of several gram-negative bacilli against cefotaxime and carbapenem have been continuously increasing. Surveillance of antimicrobial resistance is essential for providing information on the magnitude of and trend in multidrug resistance. Therefore, beginning 2011, more robust and effective management is to be legally required for six multidrug-resistant bacteria that have been linked to healthcare-related infections: vancomycin-resistant Staphylococcus aureus (VRSA), vancomycin-resistant enterococci (VRE), methicillin-resistant S. aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MRPA), multidrug-resistant Acinetobacter baumannii (MRAB), and carbapenem-resistant Enterobactericeae (CRE). We have also performed laboratory-based sentinel surveillance for VRSA/VISA since 2002 and carbapenemase-producing Enterobacteriaceae since November, 2010. This article reviews the national surveillance programs, and molecular epidemiology of multidrug-resistant bacteria.


Molecular epidemiology; Multidrug resistance; Sentinel surveillance

MeSH Terms

Acinetobacter baumannii
Bacterial Infections
Drug Resistance, Multiple
Gram-Positive Cocci
Methicillin Resistance
Molecular Epidemiology
Pseudomonas aeruginosa
Public Health
Sentinel Surveillance
Staphylococcus aureus


1. Division of Infectious Disease Surveillance, Korea Centers for Disease Control and Prevention. 2011 case definitions for national notifiable infectious diseases. PHWR. 2011. 4:897–902.
2. Ministry of Health & Welfare. Korea Centers for Diseas Control and Prevention. Korean Medical Association. 2011 case definitions for national notifiable infectious diseases. 2010. Chungbuk: Korea Centers for Control and Prevention.
3. Monthly reported cases per sentinel in comparison with past 10 years. Infectious Diseases Surveillance Center. last visited on 15 June 2012. http://idsc.nih.go.jp/idwr/kanja/monthlygraph/indexmg-e.html [Online].
4. Centers for Disease Control and Prevention (CDC). Summary of notifiable dieases-United States, summary of notifiable diseases 2009. MMWR Morb Mortal Wkly Rep. 2011. 58:1–100.
5. Patient safety. Ministy of Health and Long-Term Care. last visited on 15 June 2012. http://health.gov.on.ca/patient_safety/index.html [Online].
6. Pearson A, Chronias A, Murray M. Voluntary and mandatory surveillance for methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) bacteraemia in England. J Antimicrob Chemother. 2009. 64:Suppl 1. i11–i17.
7. Surveillace of surgical site infections in NHS hospitals in England 2010/2011. Health Protection Agency. last visited on 15 June 2012. http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317131972352 [Online].
8. Nationales Referenzzentrum (NRZ) für Staphylokokken. Robert Koch Institut. last visited on 15 June 2012. http://www.rki.de/cln_153/nn_199424/DE/Content/Infekt/NRZ/Staphylokokken/staphylo_node.html [Online].
9. Jenny-Hellman , Norman C, Olsson-Liljequist B. SWEDRES 2010 a report on Swedish antimicrobial utilization and resistance in human medicine. 2011. Stockholm: Edita Vasta Aros AB;1–49.
10. NHSN patient safety component manual. Centers for Disease Control and Prevention. last visited on 15 June 2012. http://www.cdc.gov/nhsn/TOC_PSCManual.html [Online].
11. The BSAC Bacteraemia Resistance Surveillance Programme. last visited on 15 June 2012. http://www.bsacsurv.org/uploads/protocols/publications/bacteremia_v3.4_120125.pdf [Online].
12. The BSAC Respiratory Resistance Surveillance Programme. last visited on 15 June 2012. http://www.bsacsurv.org/uploads/protocols/publications/respiratory_v4.3_120125.pdf [Online].
13. Chung G, Cha J, Han S, Jang H, Lee K, Yoo J, et al. Nationwide surveillance study of vancomycin intermediate Staphylococcus aureus strains in Korean hospitals from 2001 to 2006. J Microbiol Biotechnol. 2010. 20:637–642.
14. Kim ES, Lee HJ, Chung GT, Lee YS, Shin DH, Jung SI, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates in Korea. J Clin Microbiol. 2011. 49:1979–1982.
15. Kang G, Kim J, Cha J, Chung G, Lee Y, Yoo J. Antimicrobial susceptibility and phenotypic characteristics of Vancomycin intermediate Staphylococcus aureus. Congress of the Korean Society for Chemotherapy & the Korean Society of Infectious Diseases 2010 poster (B5).
16. Rose WE, Knier RM, Hutson PR. Pharmacodynamic effect of clinical vancomycin exposures on cell wall thickness in heterogeneous vancomycin-intermediate Staphylococcus aureus. J Antimicrob Chemother. 2010. 65:2149–2154.
17. Cui L, Neoh HM, Shoji M, Hiramatsu K. Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2009. 53:1231–1234.
18. Kato Y, Suzuki T, Ida T, Maebashi K. Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF/VraSR. J Antimicrob Chemother. 2010. 65:37–45.
19. Kim JW, Kang GS, Yoo JI, Chung GT, Yoo JS, Lee YS. Investigations of genetic point mutation in VISA from Korea hospital (2000-2009). Congress of the Korean Society for Chemotherphy & the Korean Society of the Infectious Diseases 2010 poster.
20. Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993. 175:117–127.
21. Huh JY, Lee WG, Lee K, Shin WS, Yoo JH. Distribution of insertion sequences associated with Tn1546-like elements among Enterococcus faecium isolates from patients in Korea. J Clin Microbiol. 2004. 42:1897–1902.
22. Lee WG, Huh JY, Cho SR, Lim YA. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of vanA cluster rearrangements. Antimicrob Agents Chemother. 2004. 48:1379–1381.
23. Song JH, Ko KS, Oh WS, Park S, Heo ST, Kwon KT, et al. High frequency of vancomycin-resistant Enterococcus faecium isolates with VanB phenotype and vanA genotype in Korean hospitals. Diagn Microbiol Infect Dis. 2006. 56:401–406.
24. Choi HJ, Nam D, Peck KR, Song JH, Shin D, Ko KS. Loss of vancomycin resistance not completely dependent on the Tn1546 element in Enterococcus faecium isolates. Diagn Microbiol Infect Dis. 2011. 69:105–110.
25. Werner G, Fleige C, Ewert B, Laverde-Gomez JA, Klare I, Witte W. High-level ciprofloxacin resistance among hospital-adapted Enterococcus faecium (CC17). Int J Antimicrob Agents. 2010. 35:119–125.
26. Division of Antimicrobial Resistance, Korea Centers for Disease Control and Prevention. First cases of NDM-1(New Delhi metallobeta-lactamase) producing carbapenem resistant Enterobacteriaceae in Korea. PHWR. 2010. 3:860–861.
27. Ko KS, Lee MY, Song JH, Lee H, Jung DS, Jung SI, et al. Prevalence and characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae isolated in Korean hospitals. Diagn Microbiol Infect Dis. 2008. 61:453–459.
28. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. High prevalence of extended-spectrum beta-lactamases and plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn Microbiol Infect Dis. 2010. 67:261–265.
29. Division of Antimicrobial Resistance Korea Centers for Disease Control and Prevention. Division of Laboratory Medicine Yonsei University. Monitoring of antimicrobial resistance on general hospitals in Korea. PHWR. 2010. 3:565–569.
30. Kim J, Shin KS. Production of VIM-2 type metallo-lactamase in urinary isolates Providencia rettgeri. Korean J Lab Med. 2005. 25:399–405.
31. Lee K, Chong Y, Yong D, Chong S, Yum JH. Evolution and diffusion of Class A and B carbapenemase. Evolution of antimicrobial resistance and diffusion of multidrug resistant bacteria. 2007. Seoul: Sue-Heung Publisher.
32. Rhee JY, Park YK, Shin JY, Choi JY, Lee MY, Peck KR, et al. KPC-producing extreme drug-resistant Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob Agents Chemother. 2010. 54:2278–2279.
33. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010. 10:597–602.
34. Advice on carbapenemase producers: recognition, infection control and treatment. Heath Protection Agency. last visited on 15 June 2012. http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1294740725984 [Online].
35. Korea Centers for Disease Control and Prevention. Korea National Institute of Health. 2009 Annual report-Korean antimicrobial resistance monitoring system. 2011. Chungbuk: Korea Centers for Disease Control and Prevention;42–46.
36. Yoo J, Sohn ES, Chung GT, Lee EH, Lee KR, Park YK, et al. Five-year report of national surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolated from non-tertiary care hospitals in Korea (2002-2006). Diagn Microbiol Infect Dis. 2008. 60:291–294.
37. Lee K, Park AJ, Kim MY, Lee HJ, Cho JH, Kang JO, et al. KONSAR group. Metallo-beta-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. Yonsei Med J. 2009. 50:335–339.
Full Text Links
  • KJCM
export Copy
  • Twitter
  • Facebook
Similar articles
Copyright © 2023 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr