Obstet Gynecol Sci.  2013 Mar;56(2):58-66. 10.5468/OGS.2013.56.2.58.

Non-invasive prenatal diagnosis of fetal trisomy 21 using cell-free fetal DNA in maternal blood

Affiliations
  • 1Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea. hmryu@yahoo.com
  • 2Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea.

Abstract

Since the existence of cell-free fetal DNA (cff-DNA) in maternal circulation was discovered, it has been identified as a promising source of fetal genetic material in the development of reliable methods for non-invasive prenatal diagnosis (NIPD) of fetal trisomy 21 (T21). Currently, a prenatal diagnosis of fetal T21 is achieved through invasive techniques, such as chorionic villus sampling or amniocentesis. However, such invasive diagnostic tests are expensive, require expert technicians, and have a miscarriage risk approximately 1%. Therefore, NIPD using cff-DNA in the detection of fetal T21 is significant in prenatal care. Recently, the application of new techniques using single-molecular counting methods and the development of fetal-specific epigenetic markers has opened up new possibilities in the NIPD of fetal T21 using cff-DNA. These new technologies will facilitate safer, more sensitive and accurate prenatal tests in the near future. In this review, we investigate the recent methods for the NIPD of fetal T21 and discuss their implications in future clinical practice.

Keyword

Cell-free fetal DNA; Noninvasive prenatal diagnosis; Trisomy 21

MeSH Terms

Abortion, Spontaneous
Amniocentesis
Chorionic Villi Sampling
Diagnostic Tests, Routine
DNA
Down Syndrome
Epigenomics
Female
Humans
Pregnancy
Prenatal Care
Prenatal Diagnosis
Trisomy
DNA

Cited by  1 articles

Clinical application of non-invasive prenatal testing using cell free fetal DNA
Jeong In Yang
J Korean Med Assoc. 2014;57(9):771-779.    doi: 10.5124/jkma.2014.57.9.771.


Reference

1. Grimshaw GM, Szczepura A, Hulten M, MacDonald F, Nevin NC, Sutton F, et al. Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities. Health Technol Assess. 2003. 7:1–146.
2. Megarbane A, Ravel A, Mircher C, Sturtz F, Grattau Y, Rethore MO, et al. The 50th anniversary of the discovery of trisomy 21: the past, present, and future of research and treatment of Down syndrome. Genet Med. 2009. 11:611–616.
3. ACOG Committee on Practice Bulletins. ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol. 2007. 109:217–227.
4. Malone FD, Canick JA, Ball RH, Nyberg DA, Comstock CH, Bukowski R, et al. First-trimester or second-trimester screening, or both, for Down's syndrome. N Engl J Med. 2005. 353:2001–2011.
5. Nicolaides KH. Nuchal translucency and other first-trimester sonographic markers of chromosomal abnormalities. Am J Obstet Gynecol. 2004. 191:45–67.
6. Rozenberg P, Bussieres L, Chevret S, Bernard JP, Malagrida L, Cuckle H, et al. Screening for Down syndrome using first-trimester combined screening followed by second-trimester ultrasound examination in an unselected population. Am J Obstet Gynecol. 2006. 195:1379–1387.
7. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No 88, December 2007. Invasive prenatal testing for aneuploidy. Obstet Gynecol. 2007. 110:1459–1467.
8. Alfirevic Z, Sundberg K, Brigham S. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev. 2003. (3):CD003252.
9. Cheung MC, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet. 1996. 14:264–268.
10. Rust DW, Bianchi DW. Microchimerism in endocrine pathology. Endocr Pathol. 2009. 20:11–16.
11. Bianchi DW, Simpson JL, Jackson LG, Elias S, Holzgreve W, Evans MI, et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn. 2002. 22:609–615.
12. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997. 350:485–487.
13. Lun FM, Chiu RW, Allen Chan KC, Yeung Leung T, Kin Lau T, Dennis Lo YM. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008. 54:1664–1672.
14. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999. 64:218–224.
15. Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010. 2:61ra91.
16. Scheffer PG, van der Schoot CE, Page-Christiaens GC, de Haas M. Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7-year clinical experience. BJOG. 2011. 118:1340–1348.
17. Yang YH, Han SH, Lee KR. Noninvasive prenatal diagnosis using cell-free fetal DNA in maternal plasma: clinical applications. J Genet Med. 2011. 8:1–16.
18. Lim JH, Park SY, Kim SY, Kim DJ, Kim MJ, Yang JH, et al. Effective method for extraction of cell-free DNA from maternal plasma for non-invasive first-trimester fetal gender determination: a preliminary study. J Genet Med. 2010. 7:53–58.
19. Go AT, van Vugt JM, Oudejans CB. Non-invasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities. Hum Reprod Update. 2011. 17:372–382.
20. Chiu RW, Cantor CR, Lo YM. Non-invasive prenatal diagnosis by single molecule counting technologies. Trends Genet. 2009. 25:324–331.
21. Lo YM, Lun FM, Chan KC, Tsui NB, Chong KC, Lau TK, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci U S A. 2007. 104:13116–13121.
22. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008. 105:16266–16271.
23. Chiu RW, Chan KC, Gao Y, Lau VY, Zheng W, Leung TY, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008. 105:20458–20463.
24. Sehnert AJ, Rhees B, Comstock D, de Feo E, Heilek G, Burke J, et al. Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood. Clin Chem. 2011. 57:1042–1049.
25. Chiu RW, Akolekar R, Zheng YW, Leung TY, Sun H, Chan KC, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. 2011. 342:c7401.
26. Ehrich M, Deciu C, Zwiefelhofer T, Tynan JA, Cagasan L, Tim R, et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol. 2011. 204:205.e1. 205.e11.
27. Bianchi DW, Platt LD, Goldberg JD, Abuhamad AZ, Sehnert AJ, Rava RP, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet Gynecol. 2012. 119:890–901.
28. Palomaki GE, Deciu C, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet Med. 2012. 14:296–305.
29. Sparks AB, Struble CA, Wang ET, Song K, Oliphant A. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol. 2012. 206:319.e1–319.e9.
30. Sparks AB, Wang ET, Struble CA, Barrett W, Stokowski R, McBride C, et al. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat Diagn. 2012. 32:3–9.
31. Rabinowitz M, Gemelos G, Banjevic M, Ryan A, Demko Z, Hill M. Methods for non-invasive prenatal ploidy calling [Internet]. c2013. cited 2013 Feb 14. SumoBrain;Available from: http://www.sumobrain.com/patents/wipo/Methods-non-invasive-prenatal-ploidy/WO2012108920.html.
32. Natera [Internet]. c2013. cited 2013 Feb 14. San Carlos, CA: Natera Inc.;Available from: http://natera.com.
33. Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet. 2000. 356:1170.
34. Tang NL, Leung TN, Zhang J, Lau TK, Lo YM. Detection of fetal-derived paternally inherited X-chromosome polymorphisms in maternal plasma. Clin Chem. 1999. 45:2033–2035.
35. Finning K, Martin P, Summers J, Massey E, Poole G, Daniels G. Effect of high throughput RHD typing of fetal DNA in maternal plasma on use of anti-RhD immunoglobulin in RhD negative pregnant women: prospective feasibility study. BMJ. 2008. 336:816–818.
36. Lo YM, Wong IH, Zhang J, Tein MS, Ng MH, Hjelm NM. Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res. 1999. 59:3899–3903.
37. Wong IH, Lo YM, Zhang J, Liew CT, Ng MH, Wong N, et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 1999. 59:71–73.
38. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999. 59:67–70.
39. Poon LL, Leung TN, Lau TK, Chow KC, Lo YM. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin Chem. 2002. 48:35–41.
40. Chim SS, Tong YK, Chiu RW, Lau TK, Leung TN, Chan LY, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci U S A. 2005. 102:14753–14758.
41. Chan KC, Ding C, Gerovassili A, Yeung SW, Chiu RW, Leung TN, et al. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem. 2006. 52:2211–2218.
42. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993. 366:362–365.
43. Driscoll DJ, Waters MF, Williams CA, Zori RT, Glenn CC, Avidano KM, et al. A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics. 1992. 13:917–924.
44. Schneid H, Seurin D, Vazquez MP, Gourmelen M, Cabrol S, Le Bouc Y. Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome. J Med Genet. 1993. 30:353–362.
45. Gama-Sosa MA, Midgett RM, Slagel VA, Githens S, Kuo KC, Gehrke CW, et al. Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta. 1983. 740:212–219.
46. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004. 68:196–204.
47. Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol. 2009. 62:78–89.
48. Bianchi DW. Fetal DNA in maternal plasma: the plot thickens and the placental barrier thins. Am J Hum Genet. 1998. 62:763–764.
49. Flori E, Doray B, Gautier E, Kohler M, Ernault P, Flori J, et al. Circulating cell-free fetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Case report. Hum Reprod. 2004. 19:723–724.
50. Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YM. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem. 2002. 48:421–427.
51. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992. 89:1827–1831.
52. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996. 93:9821–9826.
53. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001. 29:E65–E65.
54. Tong YK, Jin S, Chiu RW, Ding C, Chan KC, Leung TY, et al. Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach. Clin Chem. 2010. 56:90–98.
55. McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1994. 22:3640–3659.
56. Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital Methy-Light. Nucleic Acids Res. 2008. 36:4689–4698.
57. Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009. 27:858–863.
58. Lim JH, Kim SY, Park SY, Lee SY, Kim MJ, Han YJ, et al. Non-invasive epigenetic detection of fetal trisomy 21 in first trimester maternal plasma. PLoS One. 2011. 6:e27709.
59. Chim SS, Jin S, Lee TY, Lun FM, Lee WS, Chan LY, et al. Systematic search for placental DNA-methylation markers on chromosome 21: toward a maternal plasma-based epigenetic test for fetal trisomy 21. Clin Chem. 2008. 54:500–511.
60. Tong YK, Chiu RW, Akolekar R, Leung TY, Lau TK, Nicolaides KH, et al. Epigenetic-genetic chromosome dosage approach for fetal trisomy 21 detection using an autosomal genetic reference marker. PLoS One. 2010. 5:e15244.
61. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005. 37:853–862.
62. Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M, Stasiek E, et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res. 2006. 16:1046–1055.
63. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008. 26:779–785.
64. Weng YI, Huang TH, Yan PS. Methylated DNA immunoprecipitation and microarray-based analysis: detection of DNA methylation in breast cancer cell lines. Methods Mol Biol. 2009. 590:165–176.
65. Papageorgiou EA, Karagrigoriou A, Tsaliki E, Velissariou V, Carter NP, Patsalis PC. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med. 2011. 17:510–513.
Full Text Links
  • OGS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr